lod_tensor.h 5.8 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.

   Licensed under the Apache License, Version 2.0 (the "License");
   you may not use this file except in compliance with the License.
   You may obtain a copy of the License at

   http://www.apache.org/licenses/LICENSE-2.0

   Unless required by applicable law or agreed to in writing, software
   distributed under the License is distributed on an "AS IS" BASIS,
   WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
   See the License for the specific language governing permissions and
   limitations under the License. */

#pragma once

#include <memory>
18
#ifdef PADDLE_WITH_CUDA
19 20
#include <thrust/device_vector.h>
#include <thrust/host_vector.h>
21
#include <thrust/system/cuda/experimental/pinned_allocator.h>
22 23
#endif

24
#include <glog/logging.h>
25 26 27
#include "paddle/framework/ddim.h"
#include "paddle/framework/tensor.h"
#include "paddle/platform/enforce.h"
28
#include "paddle/platform/place.h"
29 30 31 32

namespace paddle {
namespace framework {

33
#ifndef PADDLE_WITH_CUDA
Q
qijun 已提交
34 35 36 37
template <typename T>
using Vector = std::vector<T>;
#else
template <typename T>
38 39
using Vector = thrust::host_vector<
    T, thrust::system::cuda::experimental::pinned_allocator<T>>;
Q
qijun 已提交
40 41
#endif

42
/*
43
 * LoD is short for Level of Details.
44
 *
45
 * - in a level, each element indicates relative offset of the lower level
46 47 48
 * - the first element should be 0 and that indicates that this sequence start
 * from 0
 * - each sequence's begin and end(no-inclusive) is level[id, id+1]
49 50 51 52 53 54 55
 *
 * For example:
 *    3-level LoD stores
 *
 *    0 2 3
 *    0 2 4 7
 *    0 2 5 7 10 12 15 20
56
 */
57
using LoD = std::vector<Vector<size_t>>;
Q
qijun 已提交
58

59 60 61 62 63 64
/*
 * Slice levels from a LoD.
 * NOTE the lowest level should always be the absolute offsets of the underlying
 * tensor instances. So if higher layers are sliced without the lowest level,
 * the lower level of the sliced LoD will be transformed to the absolute offset.
 */
65
LoD SliceLevels(const LoD& in, size_t level_begin, size_t level_end);
Q
qijun 已提交
66

67
LoD SliceInLevel(const LoD& in, size_t level, size_t elem_begin,
Q
qijun 已提交
68
                 size_t elem_end);
69 70 71 72
/*
 * Transform an LoD from relative offsets to absolute offsets.
 */
LoD ToAbsOffset(const LoD& in);
Q
qijun 已提交
73

74
bool operator==(const LoD& a, const LoD& b);
Q
qijun 已提交
75

76
/*
77
 * LoDTensor (Level of details Tensor)
78 79
 * see https://en.wikipedia.org/wiki/Level_of_details for reference.
 */
80
class LoDTensor : public Tensor {
81
 public:
82
  LoDTensor() {}
83

84
  explicit LoDTensor(const LoD& lod) : lod_(lod) {}
Q
qijun 已提交
85

86
  void set_lod(const LoD& lod) { lod_ = lod; }
Q
qijun 已提交
87

88
  LoD lod() const { return lod_; }
Q
qijun 已提交
89

90
  /*
W
wanghaoshuang 已提交
91
   * Get the start offset and end offset of an  element from LoD.
92
   */
W
wanghaoshuang 已提交
93
  std::pair<size_t, size_t> lod_element(size_t level, size_t elem) const {
94
    PADDLE_ENFORCE_LT(level, NumLevels());
W
wanghaoshuang 已提交
95 96
    PADDLE_ENFORCE_LT(elem, NumElements(level));
    return std::make_pair((lod_)[level][elem], (lod_)[level][elem + 1]);
97 98 99
  }

  /*
100
   * Number of LoDTensor's levels, each level has units of data, for example,
101 102
   * in the sentence's view, article, paragraph, sentence are 3 levels.
   */
103
  size_t NumLevels() const { return lod_.size(); }
104 105 106 107
  /*
   * Number of elements in a level.
   */
  size_t NumElements(size_t level = 0) const {
108
    PADDLE_ENFORCE_LT(level, NumLevels());
109
    // the last offset is the end of last element
Q
qijun 已提交
110
    return (lod_)[level].size() - 1;
111 112
  }

113 114 115 116 117 118 119 120 121 122 123 124
  /*
   * Number of lower-level elements.
   * For example, a 2-level lod-tensor
   *
   * 0-th level   |   |
   * 1-th level   ||  |||
   *
   * NumElements(0, 0) get 2
   * NumElements(0, 1) get 3
   */
  size_t NumElements(size_t level, size_t idx) const;

125 126 127 128 129 130
  /*
   * Get the number of instances in the underlying tensor in the `idx`-th
   * element.
   */
  size_t NumInstancesInElement(size_t level, size_t idx) const;

131
  /*
132
   * Shrink levels[level_begin:level_end]
133
   */
134
  void ShrinkLevels(size_t level_begin, size_t level_end);
135 136

  /*
137
   * Shrink elements of a level, [elem_begin: elem_end]
138
   * @note: low performance in slice lod_.
139
   */
140
  void ShrinkInLevel(size_t level, size_t elem_begin, size_t elem_end);
141

142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162
  /**
   *  @brief Serialize tensor to char bytes.
   *  Please check model_format.md for the format detail.
   *  NOTE: GPUTensor will copy data to cpu implicitly.
   *  @return return string
   */

  // FIXME(dzh) : Currently, this interface should only be used in
  // save/restore model and checkpoint. ParameterServer do not use shape
  // information to do the optimization, as a result, when we serialize
  // parameter/gradient to string, we should serialize the tensor
  // to string in the ps trainer instead of LoDTensor.
  std::string SerializeToString() const;

  /**
   *  @brief Deserialize char bytes to tensor.
   *  @return return string
   */
  void DeserializeFromString(const std::string& s,
                             const platform::Place& dst_place);

Q
qijun 已提交
163
 private:
164
  LoD lod_;
165
};
166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202

/*
 * Expand the `source` to fit the LoD of `lod`. For example, a `source`
 * LoDTensor is
 *  - LoD: [0, 2]
 *  - tensor: [a0, a1]
 * a `lod` is
 *  - LoD: [0 3 5]
 * returns a new LoDTensor
 *  - [a0 a0 a0 a1 a1]
 */
template <typename T>
LoDTensor LodExpand(const LoDTensor& source, const LoD& lod, size_t level,
                    const platform::Place& place) {
  LoD abs_lod = ToAbsOffset(lod);
  const auto& lod_level = lod[level];
  size_t num_instances = source.dims()[0];

  // new tensor
  LoDTensor tensor;
  tensor.set_lod(lod);
  auto dims = source.dims();
  dims[0] = lod_level.back();
  tensor.Resize(dims);
  tensor.mutable_data<T>(place);

  PADDLE_ENFORCE_EQ(num_instances, lod_level.size() - 1);
  for (size_t ins = 0; ins < num_instances; ins++) {
    for (size_t elem = lod_level[ins]; elem < lod_level[ins + 1]; elem++) {
      tensor.Slice(elem, elem + 1)
          .CopyFrom(source.Slice(ins, ins + 1), platform::CPUPlace(),
                    platform::CPUDeviceContext());
    }
  }
  return tensor;
}

203 204
}  // namespace framework
}  // namespace paddle