test_inference_model_io.py 3.0 KB
Newer Older
1
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
D
dzhwinter 已提交
2
#
D
dzhwinter 已提交
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
D
dzhwinter 已提交
6
#
D
dzhwinter 已提交
7
#     http://www.apache.org/licenses/LICENSE-2.0
D
dzhwinter 已提交
8
#
D
dzhwinter 已提交
9 10 11 12 13 14
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

D
dzhwinter 已提交
15 16 17
import unittest

import numpy as np
Q
Qiao Longfei 已提交
18
import paddle.v2.fluid.core as core
19

D
dzhwinter 已提交
20 21 22
import paddle.v2.fluid.executor as executor
import paddle.v2.fluid.layers as layers
import paddle.v2.fluid.optimizer as optimizer
23
from paddle.v2.fluid.framework import Program, program_guard
Q
Qiao Longfei 已提交
24
from paddle.v2.fluid.io import save_inference_model, load_inference_model
25 26 27 28 29 30 31 32


class TestBook(unittest.TestCase):
    def test_fit_line_inference_model(self):
        MODEL_DIR = "./tmp/inference_model"

        init_program = Program()
        program = Program()
33 34 35 36 37 38 39 40 41 42 43 44

        with program_guard(program, init_program):
            x = layers.data(name='x', shape=[2], dtype='float32')
            y = layers.data(name='y', shape=[1], dtype='float32')

            y_predict = layers.fc(input=x, size=1, act=None)

            cost = layers.square_error_cost(input=y_predict, label=y)
            avg_cost = layers.mean(x=cost)

            sgd_optimizer = optimizer.SGDOptimizer(learning_rate=0.001)
            sgd_optimizer.minimize(avg_cost, init_program)
45 46 47 48 49 50 51

        place = core.CPUPlace()
        exe = executor.Executor(place)

        exe.run(init_program, feed={}, fetch_list=[])

        for i in xrange(100):
D
dzhwinter 已提交
52
            tensor_x = np.array(
53
                [[1, 1], [1, 2], [3, 4], [5, 2]]).astype("float32")
D
dzhwinter 已提交
54
            tensor_y = np.array([[-2], [-3], [-7], [-7]]).astype("float32")
55 56 57 58 59 60 61

            exe.run(program,
                    feed={'x': tensor_x,
                          'y': tensor_y},
                    fetch_list=[avg_cost])

        save_inference_model(MODEL_DIR, ["x", "y"], [avg_cost], exe, program)
D
dzhwinter 已提交
62 63 64 65
        expected = exe.run(program,
                           feed={'x': tensor_x,
                                 'y': tensor_y},
                           fetch_list=[avg_cost])[0]
66 67 68 69 70 71 72 73 74 75 76 77

        reload(executor)  # reload to build a new scope
        exe = executor.Executor(place)

        [infer_prog, feed_var_names, fetch_vars] = load_inference_model(
            MODEL_DIR, exe)

        outs = exe.run(
            infer_prog,
            feed={feed_var_names[0]: tensor_x,
                  feed_var_names[1]: tensor_y},
            fetch_list=fetch_vars)
D
dzhwinter 已提交
78
        actual = outs[0]
79 80 81 82 83 84 85 86 87

        self.assertEqual(feed_var_names, ["x", "y"])
        self.assertEqual(len(fetch_vars), 1)
        self.assertEqual(str(fetch_vars[0]), str(avg_cost))
        self.assertEqual(expected, actual)


if __name__ == '__main__':
    unittest.main()