layer.h 4.6 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
// Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#pragma once

X
Xin Pan 已提交
17
#include <map>
18 19 20 21 22 23 24 25 26 27
#include <string>
#include <vector>
#include "paddle/fluid/framework/op_desc.h"
#include "paddle/fluid/framework/operator.h"
#include "paddle/fluid/framework/var_desc.h"
#include "paddle/fluid/platform/enforce.h"

namespace paddle {
namespace imperative {

X
Xin Pan 已提交
28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80
class PreparedOp {
 public:
  PreparedOp(const framework::OperatorBase& op,
             const framework::RuntimeContext& ctx,
             framework::OperatorWithKernel::OpKernelFunc func,
             platform::DeviceContext* dev_ctx)
      : op(op), ctx(ctx), func(func), dev_ctx(dev_ctx) {}

  static PreparedOp Prepare(const framework::RuntimeContext& ctx,
                            const framework::OperatorWithKernel& op,
                            const platform::Place& place) {
    framework::Scope dummy_scope;
    platform::DeviceContextPool& pool = platform::DeviceContextPool::Instance();
    auto* dev_ctx = pool.Get(place);

    // check if op[type] has kernel registered.
    auto& all_op_kernels = op.AllOpKernels();
    auto kernels_iter = all_op_kernels.find(op.Type());
    if (kernels_iter == all_op_kernels.end()) {
      PADDLE_THROW(
          "There are no kernels which are registered in the %s operator.",
          op.Type());
    }

    framework::OperatorWithKernel::OpKernelMap& kernels = kernels_iter->second;

    auto expected_kernel_key = op.GetExpectedKernelType(
        framework::ExecutionContext(op, dummy_scope, *dev_ctx, ctx));
    VLOG(3) << "expected_kernel_key:" << expected_kernel_key;

    auto kernel_iter = kernels.find(expected_kernel_key);
#ifdef PADDLE_WITH_MKLDNN
    // workaround for missing MKLDNN kernel when FLAGS_use_mkldnn env var is set
    if (kernel_iter == kernels.end() &&
        expected_kernel_key.library_type_ == framework::LibraryType::kMKLDNN) {
      VLOG(3) << "missing MKLDNN kernel: fallbacking to PLAIN one";
      expected_kernel_key.library_type_ = framework::LibraryType::kPlain;
      expected_kernel_key.data_layout_ = framework::DataLayout::kAnyLayout;
      kernel_iter = kernels.find(expected_kernel_key);
    }
#endif
    if (kernel_iter == kernels.end()) {
      PADDLE_THROW("op %s does not have kernel for %s", op.Type(),
                   KernelTypeToString(expected_kernel_key));
    }
    return PreparedOp(op, ctx, kernel_iter->second, dev_ctx);
  }

  const framework::OperatorBase& op;
  const framework::RuntimeContext& ctx;
  framework::OperatorWithKernel::OpKernelFunc func;
  platform::DeviceContext* dev_ctx;
};
81 82 83 84 85 86 87 88
class OpBase;

class VarBase {
 public:
  VarBase()
      : pre_op_(nullptr),
        pre_op_out_idx_(-1),
        var_desc_(nullptr),
X
Xin Pan 已提交
89 90 91 92 93 94 95 96 97 98 99 100 101
        var_(new framework::Variable()),
        grads_(new framework::Variable()) {}

  virtual ~VarBase() {
    if (var_) {
      delete var_;
      var_ = nullptr;
    }
    if (grads_) {
      delete grads_;
      grads_ = nullptr;
    }
  }
102

X
Xin Pan 已提交
103
  void RunBackward();
104 105 106 107

  framework::LoDTensor& Grad();

  OpBase* pre_op_;
X
Xin Pan 已提交
108
  std::string pre_op_out_name_;
109 110 111 112 113 114 115 116 117
  int pre_op_out_idx_;

  framework::VarDesc* var_desc_;
  framework::Variable* var_;
  framework::Variable* grads_;
};

class OpBase {
 public:
X
Xin Pan 已提交
118
  OpBase() : op_desc_(nullptr), grad_op_desc_(nullptr) {}
119 120 121 122 123

  virtual ~OpBase() {
    if (grad_op_desc_) delete grad_op_desc_;
  }

X
Xin Pan 已提交
124
  std::map<std::string, std::vector<VarBase*>> ApplyGrad();
125

X
Xin Pan 已提交
126 127 128
  framework::OpDesc* op_desc_;
  framework::OpDesc* grad_op_desc_;

X
Xin Pan 已提交
129 130
  std::map<std::string, std::vector<VarBase*>> input_vars_;
  std::map<std::string, std::vector<VarBase*>> output_vars_;
X
Xin Pan 已提交
131 132
  std::map<std::string, std::vector<OpBase*>> pre_ops_;
  std::map<std::string, std::vector<int>> pre_ops_out_idx_;
133

X
Xin Pan 已提交
134 135
  std::map<std::string, std::vector<framework::Variable*>> grad_input_vars_;
  std::map<std::string, std::vector<framework::Variable*>> grad_output_vars_;
136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152
  framework::BlockDesc* block_;
};

class Layer {
 public:
  virtual ~Layer() {}

  virtual std::vector<VarBase> Forward(const std::vector<VarBase>& inputs) {
    std::vector<VarBase> vars;
    return vars;
  }

  virtual void Backward() { LOG(ERROR) << "To support customize"; }
};

}  // namespace imperative
}  // namespace paddle