config_parser.py 122.5 KB
Newer Older
1
# Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved
Z
zhangjinchao01 已提交
2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from __future__ import print_function
'''
The following functions are available in the config file:

Bias: define bias. To be used as value of bias argument in Layer().

Data: define data provider.

Input: define input layer for a layer. To be used as element of inputs argument
       in Layer().

Conv: define a convolution operation for an input of a layer.

Norm: define a normalization operation for an input of a layer.

Pool: define a pooling operation for an input of a layer.

Layer: define a layer.

Parameter: define a parameter.

Import: import another config file. If the imported config file name is
        a relative path, then it will be searched under the directory of the
        current config file.

Inputs(layer_names...):
    Define the name of the input layers of the NeuralNetwork.
    The type of these layers must be "data".
    These layers will be provided with the DataBatch obtained
    from DataProvider. The data streams from DataProvider must
    have the same order.

Outputs(layer_names...):
    Define the name of the output layers of the NeuralNetwork.
    Usually the output is simply the cost layer.
    You can specify other layers as outputs and  calculate the
    cost (and its derivative) yourself.


default_initial_std(val)
default_initial_mean(val)
default_momentum(val):
default_decay_rate(val): Set the default value for these parameters


get_config_arg(name, type, default): Get the value for a config parameter.


*** customized extension to config_parser ***
The functionality of the config_parser can be extended.
If the config_arg_str for parse_config() contains
extension_module_name=[MODULE_NAME], then config_parser will call
MODULE_NAME.get_config_funcs(g_config)
MODULE_NAME.get_config_funcs() should return a dictionary of name to functions,
those functions will be available in the config file.
See trainer/tests/config_parser_test.py for example

To use this from paddle_trainer, paddle_trainer should be called with
--config_args=extension_module_name=[MODULE_NAME]

'''

import copy
import logging
import os
import sys
import traceback
import math
import shutil

try:
    from paddle.proto.DataConfig_pb2 import DataConfig
    from paddle.proto.ModelConfig_pb2 import ModelConfig
    from paddle.proto.ModelConfig_pb2 import LayerConfig
    from paddle.proto.ModelConfig_pb2 import LayerInputConfig
    from paddle.proto.ModelConfig_pb2 import ProjectionConfig
    from paddle.proto.ModelConfig_pb2 import OperatorConfig
    from paddle.proto.ModelConfig_pb2 import GeneratorConfig
    from paddle.proto.ModelConfig_pb2 import LinkConfig
    from paddle.proto.ParameterConfig_pb2 import ParameterConfig
    from paddle.proto.ParameterConfig_pb2 import ParameterUpdaterHookConfig
    from paddle.proto.TrainerConfig_pb2 import TrainerConfig

except Exception as e:
    traceback.print_exc()
    raise

logging.basicConfig(
Q
qijun 已提交
103
    format='[%(levelname)s %(asctime)s %(filename)s:%(lineno)s] %(message)s', )
Z
zhangjinchao01 已提交
104 105 106
logger = logging.getLogger('paddle')
logger.setLevel(logging.INFO)
__real_print__ = print
Q
qijun 已提交
107
print = logger.info
Z
zhangjinchao01 已提交
108 109 110 111

# from layer type name to layer class
g_layer_type_map = {}

Q
qijun 已提交
112

Z
zhangjinchao01 已提交
113 114 115
# Initialize global variables. We use this function so that we can
# call parse_config() multiple times
def init_config_environment(
Q
qijun 已提交
116 117 118 119 120 121 122 123 124 125 126 127 128 129 130
        g_default_momentum=None,
        g_default_decay_rate=None,
        g_default_initial_mean=0.,
        g_default_initial_std=0.01,
        g_default_num_batches_regularization=None,
        g_default_initial_strategy=0,
        g_default_initial_smart=False,
        g_default_gradient_clipping_threshold=None,
        g_default_device=None,
        g_default_update_hooks=None,
        g_default_compact_func=None,
        g_config=TrainerConfig(),
        g_layer_map={},
        g_parameter_map={},
        g_extended_config_funcs={},
Z
zhangjinchao01 已提交
131 132

        # store command args of paddle_trainer
Q
qijun 已提交
133
        g_command_config_args={},
Z
zhangjinchao01 已提交
134 135

        # Used for PyDataProvider to avoid duplicate module name
Q
qijun 已提交
136 137 138 139 140
        g_py_module_name_list=[],
        g_current_submodel=None,
        g_root_submodel=None,
        g_submodel_map={},
        g_submodel_stack=[],
L
Luo Tao 已提交
141 142 143
        g_add_submodel_suffix=False,

        # Whether current layer needs to pass the image height and width.
144 145 146
        # Default value is true, but if it encounters recurrent_layer_group,
        # it will be false. The reason is that image is converted to be sequence,
        # image height will be sequence length, and image width will be feature
L
Luo Tao 已提交
147 148
        # length of each timestep.
        g_pass_height_width=True, ):
Z
zhangjinchao01 已提交
149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164

    for k, v in locals().iteritems():
        globals()[k] = copy.deepcopy(v)


# Because type is widely used as a variable name in this code.
# we need a different function name for the builtin type()
def type_of(x):
    return type(x)


# Check a condition derived config file
def config_assert(b, msg):
    if not b:
        logger.fatal(msg)

Q
qijun 已提交
165

Z
zhangjinchao01 已提交
166 167
g_config_funcs = {}

Q
qijun 已提交
168

Z
zhangjinchao01 已提交
169 170 171 172 173
# decorator for indicating a function which can be used in config file
def config_func(func):
    g_config_funcs[func.func_name] = func
    return func

Q
qijun 已提交
174

Z
zhangjinchao01 已提交
175 176 177 178 179
# decorator for indicating a class which can be used in config file
def config_class(cls):
    g_config_funcs[cls.__name__] = cls
    return cls

Q
qijun 已提交
180

Z
zhangjinchao01 已提交
181 182 183 184 185 186
# decorator for indicating a class for a layer type
def config_layer(layer_type):
    def wrap(cls):
        g_config_funcs[cls.__name__] = cls
        g_layer_type_map[layer_type] = cls
        return cls
Q
qijun 已提交
187

Z
zhangjinchao01 已提交
188 189
    return wrap

Q
qijun 已提交
190

Z
zhangjinchao01 已提交
191 192 193
def gen_parameter_name(layer_name, input_index):
    return '_%s.w%d' % (layer_name, input_index)

Q
qijun 已提交
194

Z
zhangjinchao01 已提交
195 196 197
def gen_bias_parameter_name(layer_name):
    return '_%s.wbias' % layer_name

Q
qijun 已提交
198

Z
zhangjinchao01 已提交
199 200 201
def default(x, default_value):
    return default_value if x is None else x

Q
qijun 已提交
202

Z
zhangjinchao01 已提交
203 204 205 206 207 208
class Cfg(object):
    def add_keys(self, locals):
        for k, v in locals.iteritems():
            if not k.startswith('_'):
                self.__setattr__(k, v)

Q
qijun 已提交
209

Z
zhangjinchao01 已提交
210 211
# functions available in config file

Q
qijun 已提交
212

Z
zhangjinchao01 已提交
213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230
# Define the name of the input layers of the NeuralNetwork.
# The type of these layers must be "data".
# These layers will be provided with the DataBatch obtained
# from DataProvider. The data streams from DataProvider must
# have the same order.
@config_func
def Inputs(*args):
    for name in args:
        name = MakeLayerNameInSubmodel(name)
        global g_current_submodel, g_root_submodel
        if g_current_submodel.is_recurrent_layer_group:
            config_assert(False, "Do not set Inputs in recurrent layer group")
        else:
            g_current_submodel.input_layer_names.append(name)

        if g_current_submodel is g_root_submodel:
            g_config.model_config.input_layer_names.append(name)

Q
qijun 已提交
231

232 233
@config_func
def HasInputsSet():
234
    return len(g_current_submodel.input_layer_names) != 0
235

Z
zhangjinchao01 已提交
236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259

# Define the name of the output layers of the NeuralNetwork.
# Usually the output is simply the cost layer.
# You can specify other layers as outputs and calculate the
# cost (and its derivative) yourself.
@config_func
def Outputs(*args):
    for name in args:
        name = MakeLayerNameInSubmodel(name)
        global g_current_submodel, g_root_submodel
        if g_current_submodel.is_recurrent_layer_group:
            config_assert(False, "Do not set Outputs in recurrent layer group")
        else:
            g_current_submodel.output_layer_names.append(name)

        if g_current_submodel is g_root_submodel:
            g_config.model_config.output_layer_names.append(name)


@config_func
def SubModelBegin(name):
    global g_current_submodel, g_root_submodel, g_submodel_stack
    g_submodel_stack.append(g_current_submodel)

Q
qijun 已提交
260
    name = MakeLayerNameInParentSubmodel(name)  #rename in nested submodel
Z
zhangjinchao01 已提交
261 262 263 264 265 266 267 268 269

    config_assert(name not in g_submodel_map,
                  'Duplicated submodel name: %s' % name)

    sub_model = g_config.model_config.sub_models.add()
    sub_model.name = name
    g_submodel_map[name] = sub_model
    g_current_submodel = sub_model

Q
qijun 已提交
270

Z
zhangjinchao01 已提交
271
@config_func
Q
qijun 已提交
272
def SubModelEnd(name=None):
Z
zhangjinchao01 已提交
273
    global g_current_submodel, g_root_submodel, g_submodel_stack
Q
qijun 已提交
274 275
    config_assert(g_current_submodel is not g_root_submodel,
                  "submodel not begin")
Z
zhangjinchao01 已提交
276
    if name is not None:
Q
qijun 已提交
277 278 279
        config_assert(
            g_current_submodel.name == MakeLayerNameInParentSubmodel(name),
            "submodel name error")
Z
zhangjinchao01 已提交
280 281 282

    g_current_submodel = g_submodel_stack.pop()

Q
qijun 已提交
283

Z
zhangjinchao01 已提交
284 285
def MakeLayerNameInParentSubmodel(name):
    suffix = ""
286 287
    if len(g_submodel_stack) > 1:
        suffix = "@" + g_submodel_stack[-1].name
Z
zhangjinchao01 已提交
288 289
    return name + suffix

Q
qijun 已提交
290

Z
zhangjinchao01 已提交
291 292 293
def GetLayerBaseName(name):
    return name.split('@')[0]

Q
qijun 已提交
294 295

def MakeLayerNameInSubmodel(name, submodel_name=None):
Z
zhangjinchao01 已提交
296 297
    global g_current_submodel
    global g_add_submodel_suffix
Q
qijun 已提交
298 299
    if (submodel_name is None and not g_add_submodel_suffix and
            not g_current_submodel.is_recurrent_layer_group):
Z
zhangjinchao01 已提交
300 301 302 303 304
        return name
    if submodel_name is None:
        submodel_name = g_current_submodel.name
    return name + "@" + submodel_name

Q
qijun 已提交
305

Z
zhangjinchao01 已提交
306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328
# Define a recurrent layer group begin with RecurrentLayerGroupBegin
# and end with RecurrentLayerGroupEnd.
# A recurrent layer group forward/backward one frame after previous frame
# forward/backward through all layers in layer group.
# in_links are names of layer used as input layer in the layer group.
# out_links are names of layer in layer group used as outside layer's input.
#
# If generator is set, the layer group need one or more than one outlinks.
# The first outlink should always be the generated token ids.
# If generator.num_results_per_sample is not set, the output for one sample is
# a ids sequence. Else if num_results_per_sample is more than one,
# the output for one sample is up to #num_results_per_sample generated
# sequences, which are packed in one sequence in output ids vector. Each
# generated sequence has a generation probability. The probabilities for one
# sample are stored in one row of output value matrix.
# Packed generated sequences format, for each i:
#   seq_i_length: one interger, seq_i content length,
#   [seq_i content], length = seq_i_length
#   seq_i_end_mark: one interger, for format check, always -1
# You can use "seq_text_printer" to print the output of the generator.
@config_func
def RecurrentLayerGroupWithoutOutLinksBegin(name,
                                            in_links,
329 330
                                            seq_reversed=False,
                                            target_inlinkname=""):
Z
zhangjinchao01 已提交
331 332 333 334 335 336 337
    global g_current_submodel
    config_assert(g_config.model_config.type == "recurrent_nn",
                  "RecurrentLayerGroup should be used only in recurrent_nn")
    RecurrentLayerGroup(name=name)  # add to father model
    SubModelBegin(name)
    g_current_submodel.is_recurrent_layer_group = True
    g_current_submodel.reversed = seq_reversed
338
    g_current_submodel.target_inlinkid = -1
Z
zhangjinchao01 已提交
339
    in_links_count = 0
340
    for linkid, link in enumerate(in_links):
Z
zhangjinchao01 已提交
341 342 343 344 345 346
        if isinstance(link, basestring):
            name = link
            has_subseq = False
        else:
            name = link.link_name
            has_subseq = link.has_subseq
347 348 349 350
        # assign target_inlinkid according to target_inlinkname
        if target_inlinkname == name:
            g_current_submodel.target_inlinkid = linkid

Z
zhangjinchao01 已提交
351 352 353
        if in_links_count == 0:
            in_links_has_subseq = has_subseq
        else:
Q
qijun 已提交
354 355 356 357
            config_assert(
                in_links_has_subseq == has_subseq,
                "The sequence type of in_links should be the same in RecurrentLayerGroup"
            )
Z
zhangjinchao01 已提交
358 359 360 361 362 363 364
        in_links_count += 1
        layer_name = MakeLayerNameInParentSubmodel(name)
        layer = g_layer_map[layer_name]
        if has_subseq:
            SequenceScatterAgentLayer(name=name, size=layer.size)
        else:
            ScatterAgentLayer(name=name, size=layer.size)
365

Z
zhangjinchao01 已提交
366 367 368 369 370
        pair = g_current_submodel.in_links.add()
        pair.layer_name = layer_name
        pair.link_name = MakeLayerNameInSubmodel(name)
        pair.has_subseq = has_subseq

Q
qijun 已提交
371

Z
zhangjinchao01 已提交
372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387
@config_func
def RecurrentLayerGroupSetOutLink(link):
    if isinstance(link, basestring):
        name = link
        has_subseq = False
    else:
        name = link.link_name
        has_subseq = link.has_subseq
    layer_name = MakeLayerNameInParentSubmodel(name)
    pair = g_current_submodel.out_links.add()
    pair.layer_name = MakeLayerNameInSubmodel(name)
    pair.link_name = layer_name
    pair.has_subseq = has_subseq


def RecurrentLayerGroupSetGenerator(generator=None):
Q
qijun 已提交
388
    generator.eos_layer_name = MakeLayerNameInSubmodel(generator.eos_layer_name)
Z
zhangjinchao01 已提交
389 390 391 392 393 394 395 396
    g_current_submodel.generator.CopyFrom(generator)


@config_func
def RecurrentLayerGroupBegin(name,
                             in_links,
                             out_links,
                             generator=None,
397
                             target_inlinkname="",
Z
zhangjinchao01 已提交
398
                             seq_reversed=False):
Q
qijun 已提交
399
    RecurrentLayerGroupWithoutOutLinksBegin(name, in_links, seq_reversed,
400
                                            target_inlinkname)
Z
zhangjinchao01 已提交
401 402 403 404 405
    for link in out_links:
        RecurrentLayerGroupSetOutLink(link)

    if generator is not None:
        RecurrentLayerGroupSetGenerator(generator)
Q
qijun 已提交
406 407 408 409 410
        config_assert(
            len(in_links) == 0, "no in_links should be passed to generator")
        config_assert(
            len(out_links) >= 1,
            "one or more than one out_links should be passed to generator")
Z
zhangjinchao01 已提交
411 412 413 414 415 416 417


@config_func
def RecurrentLayerGroupEnd(name):
    global g_current_submodel
    config_assert(g_current_submodel.is_recurrent_layer_group,
                  "RecurrentLayerGroup not begin")
Q
qijun 已提交
418
    for pair in g_current_submodel.memories:  #check exist
Z
zhangjinchao01 已提交
419
        layer = g_layer_map[pair.layer_name]
Y
Yu Yang 已提交
420 421
        config_assert(layer is not None,
                      "memory declare wrong name:%s" % pair.layer_name)
Z
zhangjinchao01 已提交
422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439
        memory_link = g_layer_map[pair.link_name]
        config_assert(layer.size == memory_link.size,
                      "memory declare wrong size:%d" % memory_link.size)

    prev_submodel = g_current_submodel
    SubModelEnd(name)

    for pair in prev_submodel.out_links:
        layer = g_layer_map[pair.layer_name]
        # add out agent to father model
        agent_name = GetLayerBaseName(pair.link_name)
        if prev_submodel.HasField("generator"):
            DataLayer(name=agent_name, size=layer.size)
        elif pair.has_subseq:
            SequenceGatherAgentLayer(name=agent_name, size=layer.size)
        else:
            GatherAgentLayer(name=agent_name, size=layer.size)

Q
qijun 已提交
440

Z
zhangjinchao01 已提交
441 442 443 444 445 446
# Define the model type
# currently, the paddle supports "nn", "recurrent_nn", "recursive_nn" and "multi_nn"
@config_func
def model_type(name):
    g_config.model_config.type = name

Q
qijun 已提交
447

Z
zhangjinchao01 已提交
448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464
@config_class
class Bias(Cfg):
    def __init__(
            self,
            parameter_name=None,
            learning_rate=None,
            momentum=None,
            decay_rate=None,
            decay_rate_l1=None,
            initial_mean=None,
            initial_std=None,
            initial_strategy=None,
            initial_smart=None,
            num_batches_regularization=None,
            sparse_remote_update=None,
            gradient_clipping_threshold=None,
            is_static=None,
Q
qijun 已提交
465
            is_shared=None, ):
Z
zhangjinchao01 已提交
466 467
        self.add_keys(locals())

Q
qijun 已提交
468

Z
zhangjinchao01 已提交
469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488
# Define one input for a layer
@config_class
class Input(Cfg):
    def __init__(
            self,
            input_layer_name,
            parameter_name=None,
            learning_rate=None,
            momentum=None,
            decay_rate=None,
            decay_rate_l1=None,
            initial_mean=None,
            initial_std=None,
            initial_strategy=None,
            initial_smart=None,
            num_batches_regularization=None,
            sparse_remote_update=None,
            sparse_update=None,
            gradient_clipping_threshold=None,
            conv=None,
L
liaogang 已提交
489
            bilinear_interp=None,
Z
zhangjinchao01 已提交
490 491 492 493
            norm=None,
            pool=None,
            image=None,
            block_expand=None,
494
            maxout=None,
Q
qijun 已提交
495
            spp=None,
Z
zhangjinchao01 已提交
496 497 498 499 500
            format=None,
            nnz=None,
            is_static=None,
            is_shared=None,
            update_hooks=None,
501 502
            input_layer_argument=None,
            not_make_layer_name_in_submodel=None, ):
Z
zhangjinchao01 已提交
503 504
        self.add_keys(locals())
        self.input_layer_name = MakeLayerNameInSubmodel(input_layer_name)
505 506
        if not_make_layer_name_in_submodel:
            self.input_layer_name = input_layer_name
Z
zhangjinchao01 已提交
507

Q
qijun 已提交
508

Z
zhangjinchao01 已提交
509 510 511
# Define a projection for iexed layer
@config_class
class Projection(Input):
Q
qijun 已提交
512 513
    type = None  # subclass should set it correctly

Z
zhangjinchao01 已提交
514 515 516
    def __init__(
            self,
            input_layer_name,
Q
qijun 已提交
517
            size=0,  # projection output size
Z
zhangjinchao01 已提交
518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536
            parameter_name=None,
            learning_rate=None,
            momentum=None,
            decay_rate=None,
            decay_rate_l1=None,
            initial_mean=None,
            initial_std=None,
            initial_strategy=None,
            initial_smart=None,
            num_batches_regularization=None,
            sparse_remote_update=None,
            sparse_update=None,
            gradient_clipping_threshold=None,
            ptype=None,
            format=None,
            nnz=None,
            is_static=None,
            is_shared=None,
            update_hooks=None,
Q
qijun 已提交
537
            input_layer_argument=None, ):
Z
zhangjinchao01 已提交
538 539 540 541 542 543 544 545 546 547 548 549 550
        self.add_keys(locals())
        self.input_layer_name = MakeLayerNameInSubmodel(input_layer_name)

        self.proj_conf = ProjectionConfig()
        if ptype is not None:
            self.proj_conf.type = ptype
        else:
            self.proj_conf.type = self.type

    # calculate the output_size given input_size. return 0
    # to indicate using the size from Layer config
    def calc_output_size(self, input_layer_config):
        return self.size
Q
qijun 已提交
551

Z
zhangjinchao01 已提交
552 553
    def calc_parameter_size(self, input_size, output_size):
        raise NotimplementedError
Q
qijun 已提交
554

Z
zhangjinchao01 已提交
555 556 557 558 559 560 561 562 563 564
    def calc_parameter_dims(self, input_size, output_size):
        raise NotimplementedError


@config_class
class IdentityProjection(Projection):
    type = 'identity'

    def calc_output_size(self, input_layer_config):
        return input_layer_config.size
Q
qijun 已提交
565

Z
zhangjinchao01 已提交
566 567
    def calc_parameter_size(self, input_size, output_size):
        return 0
Q
qijun 已提交
568

Z
zhangjinchao01 已提交
569 570 571
    def calc_parameter_dims(self, input_size, output_size):
        return []

Q
qijun 已提交
572

Z
zhangjinchao01 已提交
573 574 575 576 577 578
# Like IdentityProjection, but layer size may smaller than input size,
# the projection select dimesions [offset, offset+layer_size) from input
@config_class
class IdentityOffsetProjection(Projection):
    type = 'identity_offset'

Q
qijun 已提交
579 580 581
    def __init__(self, input_layer_name, offset, **xargs):
        super(IdentityOffsetProjection, self).__init__(input_layer_name,
                                                       **xargs)
Z
zhangjinchao01 已提交
582 583 584 585
        self.proj_conf.offset = offset

    def calc_parameter_size(self, input_size, output_size):
        return 0
Q
qijun 已提交
586

Z
zhangjinchao01 已提交
587 588 589
    def calc_parameter_dims(self, input_size, output_size):
        return []

Q
qijun 已提交
590

Z
zhangjinchao01 已提交
591 592 593 594 595 596 597
# DotMulProjection performs element-wise multiplication with weight
@config_class
class DotMulProjection(Projection):
    type = 'dot_mul'

    def calc_output_size(self, input_layer_config):
        return input_layer_config.size
Q
qijun 已提交
598

Z
zhangjinchao01 已提交
599 600
    def calc_parameter_size(self, input_size, output_size):
        return output_size
Q
qijun 已提交
601

Z
zhangjinchao01 已提交
602 603 604
    def calc_parameter_dims(self, input_size, output_size):
        return [1, output_size]

L
Luo Tao 已提交
605

X
xuwei06 已提交
606 607 608 609 610 611 612 613 614 615 616 617 618 619
# ScalingProjection
@config_class
class ScalingProjection(Projection):
    type = 'scaling'

    def calc_output_size(self, input_layer_config):
        return input_layer_config.size

    def calc_parameter_size(self, input_size, output_size):
        return 1

    def calc_parameter_dims(self, input_size, output_size):
        return [1, 1]

Q
qijun 已提交
620

Z
zhangjinchao01 已提交
621 622 623 624 625 626
@config_class
class TableProjection(Projection):
    type = 'table'

    def calc_parameter_size(self, input_size, output_size):
        return input_size * output_size
Q
qijun 已提交
627

Z
zhangjinchao01 已提交
628 629 630
    def calc_parameter_dims(self, input_size, output_size):
        return [input_size, output_size]

Q
qijun 已提交
631

Z
zhangjinchao01 已提交
632 633 634 635 636 637
@config_class
class FullMatrixProjection(Projection):
    type = 'fc'

    def calc_parameter_size(self, input_size, output_size):
        return input_size * output_size
Q
qijun 已提交
638

Z
zhangjinchao01 已提交
639 640 641
    def calc_parameter_dims(self, input_size, output_size):
        return [input_size, output_size]

Q
qijun 已提交
642

Z
zhangjinchao01 已提交
643 644 645 646 647 648
@config_class
class TransposedFullMatrixProjection(Projection):
    type = 'trans_fc'

    def calc_parameter_size(self, input_size, output_size):
        return input_size * output_size
Q
qijun 已提交
649

Z
zhangjinchao01 已提交
650 651 652
    def calc_parameter_dims(self, input_size, output_size):
        return [output_size, input_size]

Q
qijun 已提交
653

Z
zhangjinchao01 已提交
654 655 656 657
@config_class
class ContextProjection(Projection):
    type = 'context'

Q
qijun 已提交
658 659
    def __init__(self, input_layer_name, context_start, context_length,
                 trainable_padding, **xargs):
Z
zhangjinchao01 已提交
660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682
        super(ContextProjection, self).__init__(input_layer_name, **xargs)
        self.proj_conf.context_start = context_start
        self.proj_conf.context_length = context_length
        self.proj_conf.trainable_padding = trainable_padding
        self._total_pad = max(0, -self.proj_conf.context_start) \
                          + max(0, self.proj_conf.context_start \
                                + self.proj_conf.context_length - 1)

    def calc_output_size(self, input_layer_config):
        return input_layer_config.size * self.proj_conf.context_length

    def calc_parameter_size(self, input_size, output_size):
        if self.proj_conf.trainable_padding == False:
            return 0
        else:
            return input_size * self._total_pad

    def calc_parameter_dims(self, input_size, output_size):
        return [self._total_pad, input_size]

    _total_pad = 0


683 684 685 686
@config_class
class ConvProjection(Projection):
    type = 'conv'

Q
qijun 已提交
687 688 689 690 691
    def __init__(self,
                 input_layer_name,
                 num_filters=None,
                 conv_conf=None,
                 **xargs):
692 693 694 695 696
        super(ConvProjection, self).__init__(input_layer_name, **xargs)

        if num_filters is not None:
            self.proj_conf.num_filters = num_filters

Q
qijun 已提交
697
        parse_conv(conv_conf, input_layer_name, self.proj_conf.conv_conf,
698
                   num_filters)
L
Luo Tao 已提交
699 700 701
        self.proj_conf.output_size = self.proj_conf.conv_conf.output_x * \
                                     self.proj_conf.conv_conf.output_y * \
                                     num_filters
702 703 704 705 706 707 708 709 710

    def calc_output_size(self, input_layer_config):
        return self.proj_conf.output_size

    def calc_parameter_size(self, input_size, output_size):
        co = self.proj_conf.num_filters
        ci = self.proj_conf.conv_conf.channels
        fh = self.proj_conf.conv_conf.filter_size
        fw = self.proj_conf.conv_conf.filter_size_y
711 712
        gr = self.proj_conf.conv_conf.groups
        return co * ci * fh * fw / gr
713 714 715 716 717 718 719

    def calc_bias_size(self):
        return self.proj_conf.num_filters

    def calc_parameter_dims(self, input_size, output_size):
        return None

Q
qijun 已提交
720

Z
zhangjinchao01 已提交
721 722 723
# Define a operator for mixed layer
@config_class
class Operator(Cfg):
Q
qijun 已提交
724 725
    type = None  # subclass should set it correctly

Z
zhangjinchao01 已提交
726 727
    def __init__(
            self,
Q
qijun 已提交
728
            input_layer_names, ):
Z
zhangjinchao01 已提交
729 730 731 732 733 734 735 736 737 738
        self.add_keys(locals())
        self.operator_conf = OperatorConfig()
        self.operator_conf.type = self.type

    def check_dims(self):
        pass

    def calc_output_size(self, input_sizes):
        return 0

Q
qijun 已提交
739

Z
zhangjinchao01 已提交
740 741 742
@config_class
class DotMulOperator(Operator):
    type = 'dot_mul'
Q
qijun 已提交
743 744 745

    def __init__(self, input_layer_names, scale=None, **xargs):
        super(DotMulOperator, self).__init__(input_layer_names, **xargs)
Z
zhangjinchao01 已提交
746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763
        if scale is not None:
            self.operator_conf.dotmul_scale = scale

        config_assert(len(input_layer_names) == 2, "DotMul is binary operator")

    def check_dims(self):
        for i in range(2):
            config_assert(self.operator_conf.input_sizes[i] ==
                          self.operator_conf.output_size,
                          "DotMul input_size != output_size")

    def calc_output_size(self, input_sizes):
        return input_sizes[0]


@config_class
class ConvOperator(Operator):
    type = 'conv'
Q
qijun 已提交
764 765 766 767 768 769 770

    def __init__(self,
                 input_layer_names,
                 num_filters=None,
                 conv_conf=None,
                 **xargs):
        super(ConvOperator, self).__init__(input_layer_names, **xargs)
Z
zhangjinchao01 已提交
771 772 773
        if num_filters is not None:
            self.operator_conf.num_filters = num_filters

774 775
        parse_conv(conv_conf,
                   MakeLayerNameInSubmodel(input_layer_names[0]),
Q
qijun 已提交
776
                   self.operator_conf.conv_conf, num_filters)
L
Luo Tao 已提交
777 778 779
        self.operator_conf.output_size = self.operator_conf.conv_conf.output_x * \
                                         self.operator_conf.conv_conf.output_y * \
                                         num_filters
Z
zhangjinchao01 已提交
780 781 782

        config_assert(len(input_layer_names) == 2, "Conv is binary operator")

783 784
    def calc_output_size(self, input_sizes):
        return self.operator_conf.output_size
Z
zhangjinchao01 已提交
785 786 787 788 789


# please refer to the comments in proto/ModelConfig.proto
@config_class
class Conv(Cfg):
Q
qijun 已提交
790 791 792 793 794 795 796 797 798 799 800 801 802
    def __init__(self,
                 filter_size,
                 channels,
                 padding=None,
                 stride=None,
                 groups=None,
                 filter_channels=None,
                 output_x=None,
                 img_size=None,
                 caffe_mode=True,
                 filter_size_y=None,
                 padding_y=None,
                 stride_y=None):
Z
zhangjinchao01 已提交
803 804
        self.add_keys(locals())
        if filter_size_y is None:
Q
qijun 已提交
805
            self.filter_size_y = filter_size
Z
zhangjinchao01 已提交
806
        if padding_y is None:
Q
qijun 已提交
807
            self.padding_y = padding
Z
zhangjinchao01 已提交
808
        if stride_y is None:
Q
qijun 已提交
809
            self.stride_y = stride
Z
zhangjinchao01 已提交
810
        if output_x is not None:
Q
qijun 已提交
811 812
            config_assert(output_x <= 0)

Z
zhangjinchao01 已提交
813

L
liaogang 已提交
814 815
@config_class
class BilinearInterp(Cfg):
L
Luo Tao 已提交
816
    def __init__(self, out_size_x=None, out_size_y=None, channels=None):
L
liaogang 已提交
817 818
        self.add_keys(locals())

Q
qijun 已提交
819

Z
zhangjinchao01 已提交
820 821
@config_class
class Pool(Cfg):
D
dangqingqing 已提交
822 823 824 825 826 827 828 829 830 831 832 833
    def __init__(
            self,
            pool_type,
            channels,
            size_x,
            size_y=None,
            img_width=None,
            start=None,
            stride=None,  # 1 by defalut in protobuf
            stride_y=None,
            padding=None,  # 0 by defalut in protobuf
            padding_y=None):
Z
zhangjinchao01 已提交
834
        self.add_keys(locals())
Q
qijun 已提交
835 836


Q
qijun 已提交
837
@config_class
Q
qijun 已提交
838
class SpatialPyramidPool(Cfg):
L
Luo Tao 已提交
839
    def __init__(self, pool_type, pyramid_height, channels):
Q
qijun 已提交
840
        self.add_keys(locals())
Z
zhangjinchao01 已提交
841

Q
qijun 已提交
842

Z
zhangjinchao01 已提交
843 844
@config_class
class Norm(Cfg):
Q
qijun 已提交
845 846 847 848 849 850 851 852 853
    def __init__(self,
                 norm_type,
                 channels,
                 size,
                 scale,
                 pow,
                 output_x=None,
                 img_size=None,
                 blocked=None):
Z
zhangjinchao01 已提交
854 855
        self.add_keys(locals())

Q
qijun 已提交
856

Z
zhangjinchao01 已提交
857 858
@config_class
class Image(Cfg):
Q
qijun 已提交
859
    def __init__(self, channels, img_size=None):
Z
zhangjinchao01 已提交
860 861
        self.add_keys(locals())

Q
qijun 已提交
862

Z
zhangjinchao01 已提交
863 864
@config_class
class BlockExpand(Cfg):
Q
qijun 已提交
865 866 867 868 869 870 871 872 873 874 875 876
    def __init__(self,
                 channels,
                 padding_x=0,
                 padding_y=0,
                 stride_x=0,
                 stride_y=0,
                 block_x=0,
                 block_y=0,
                 img_size_x=0,
                 img_size_y=0,
                 output_x=0,
                 output_y=0):
Z
zhangjinchao01 已提交
877 878
        self.add_keys(locals())

Q
qijun 已提交
879

880 881
@config_class
class MaxOut(Cfg):
Q
qijun 已提交
882
    def __init__(self, channels, groups, img_size_x=0, img_size_y=0):
883 884
        self.add_keys(locals())

Q
qijun 已提交
885

Z
zhangjinchao01 已提交
886 887 888 889 890 891 892 893 894 895 896 897 898
def DataBase(async_load_data=False,
             constant_slots=None,
             data_ratio=1,
             is_main_data=True,
             usage_ratio=None):
    # default: all sub dataproviders are treat as "main data".
    # see proto/DataConfig.proto for is_main_data
    data_config = DataConfig()

    data_config.async_load_data = async_load_data

    if constant_slots:
        data_config.constant_slots.extend(constant_slots)
Q
qijun 已提交
899 900
    data_config.data_ratio = data_ratio
    data_config.is_main_data = is_main_data
Z
zhangjinchao01 已提交
901

Q
qijun 已提交
902
    usage_ratio = default(usage_ratio, settings_deprecated["usage_ratio"])
Z
zhangjinchao01 已提交
903 904 905 906 907 908
    config_assert(usage_ratio >= 0 and usage_ratio <= 1,
                  "The range of usage_ratio is [0, 1]")
    data_config.usage_ratio = usage_ratio

    return data_config

Q
qijun 已提交
909

Z
zhangjinchao01 已提交
910
@config_func
Q
qijun 已提交
911 912 913 914 915
def SimpleData(files=None,
               feat_dim=None,
               context_len=None,
               buffer_capacity=None,
               **xargs):
Z
zhangjinchao01 已提交
916 917 918 919 920 921 922 923 924 925
    data_config = DataBase(**xargs)
    data_config.type = 'simple'
    data_config.files = files
    data_config.feat_dim = feat_dim
    if context_len is not None:
        data_config.context_len = context_len
    if buffer_capacity:
        data_config.buffer_capacity = buffer_capacity
    return data_config

Q
qijun 已提交
926

Z
zhangjinchao01 已提交
927
@config_func
Q
qijun 已提交
928 929 930 931 932 933 934 935 936 937
def PyData(files=None,
           type=None,
           file_group_queue_capacity=None,
           load_data_module=None,
           load_data_object=None,
           load_data_args="",
           load_file_count=None,
           constant_slots=None,
           load_thread_num=None,
           **xargs):
Z
zhangjinchao01 已提交
938 939 940
    data_config = DataBase(**xargs)
    data_config.type = 'py'
    if load_data_module in g_py_module_name_list:
Q
qijun 已提交
941

Z
zhangjinchao01 已提交
942 943 944
        def get_path(module):
            m = __import__(load_data_module)
            return os.path.split(os.path.realpath(m.__file__))[0]
Q
qijun 已提交
945

Z
zhangjinchao01 已提交
946 947 948
        # python C-api is not thread safe, one module can only be import once,
        # so here we nedd to copy the module with different names if it has to be
        # imported several times.
Q
qijun 已提交
949 950
        module_new_name = "%s_copy_%d" % (load_data_module,
                                          len(g_py_module_name_list))
Z
zhangjinchao01 已提交
951
        g_py_module_name_list.append(module_new_name)
Q
qijun 已提交
952 953 954 955
        module_path = "%s/%s.py" % (get_path(load_data_module),
                                    load_data_module)
        new_module_path = "%s/%s.py" % (get_path(load_data_module),
                                        module_new_name)
Z
zhangjinchao01 已提交
956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979
        if os.path.isfile(module_path) == False:
            raise Exception("File %s is not exist." % module_path)
        shutil.copy2(module_path, new_module_path)
        load_data_module = module_new_name
    else:
        g_py_module_name_list.append(load_data_module)
    if load_data_module is not None and load_data_object is not None:
        data_config.load_data_module = load_data_module
        data_config.load_data_object = load_data_object
    else:
        raise ValueError('load_data_module, load_data_object is not defined.')
    data_config.load_data_args = load_data_args

    data_config.files = files or ''
    if file_group_queue_capacity is not None:
        data_config.file_group_conf.queue_capacity = file_group_queue_capacity
    if load_file_count is not None:
        data_config.file_group_conf.load_file_count = load_file_count
    if load_thread_num is not None:
        data_config.file_group_conf.load_thread_num = load_thread_num
    if constant_slots:
        data_config.constant_slots.extend(constant_slots)
    return data_config

Q
qijun 已提交
980

Z
zhangjinchao01 已提交
981
@config_func
Q
qijun 已提交
982 983 984 985 986 987 988
def ProtoData(files=None,
              type=None,
              file_group_queue_capacity=None,
              load_file_count=None,
              constant_slots=None,
              load_thread_num=None,
              **xargs):
Z
zhangjinchao01 已提交
989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008
    data_config = DataBase(**xargs)
    if type is None:
        data_config.type = 'proto'
    else:
        data_config.type = type
    data_config.files = files

    # When type="proto_group", one data provider contains at most
    # load_file_count files, and there are at most
    # (queue_capacity + load_thread_num + 1) data providers in memory
    if file_group_queue_capacity is not None:
        data_config.file_group_conf.queue_capacity = file_group_queue_capacity
    if load_file_count is not None:
        data_config.file_group_conf.load_file_count = load_file_count
    if load_thread_num is not None:
        data_config.file_group_conf.load_thread_num = load_thread_num
    if constant_slots:
        data_config.constant_slots.extend(constant_slots)
    return data_config

Q
qijun 已提交
1009

Z
zhangjinchao01 已提交
1010 1011
#real data for training is actually provided by "sub_data" data providers.
@config_func
Q
qijun 已提交
1012
def MultiData(sub_data=[]):
Z
zhangjinchao01 已提交
1013 1014 1015 1016 1017
    data_config = DataConfig()
    data_config.type = 'multi'
    data_config.sub_data_configs.extend(sub_data)
    return data_config

Q
qijun 已提交
1018

Z
zhangjinchao01 已提交
1019
@config_func
Q
qijun 已提交
1020 1021 1022 1023 1024 1025 1026
def Data(type,
         files=None,
         feat_dim=None,
         slot_dims=None,
         context_len=None,
         buffer_capacity=None,
         **xargs):
Z
zhangjinchao01 已提交
1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061

    data_config = DataBase(**xargs)
    data_config.type = type
    data_config.files = files
    data_config.feat_dim = feat_dim
    data_config.slot_dims.extend(slot_dims)
    if context_len is not None:
        data_config.context_len = context_len
    data_config.buffer_capacity = buffer_capacity
    return data_config


@config_func
def TrainData(data_config, async_load_data=None):
    config_assert(not g_config.HasField('data_config'),
                  'Only one TrainData definition is allowed')
    g_config.data_config.CopyFrom(data_config)
    g_config.data_config.for_test = False
    if async_load_data is not None:
        logger.warning("Deprecated: async_load_data should be used inside"
                       " Data definition")
        g_config.data_config.async_load_data = async_load_data


@config_func
def TestData(data_config, async_load_data=None):
    config_assert(not g_config.HasField('test_data_config'),
                  'Only one TestData definition is allowed')
    g_config.test_data_config.CopyFrom(data_config)
    g_config.test_data_config.for_test = True
    if async_load_data is not None:
        logger.warning("Deprecated: async_load_data should be used inside"
                       " Data definition")
        g_config.test_data_config.async_load_data = async_load_data

Q
qijun 已提交
1062

L
Luo Tao 已提交
1063 1064
#caffe_mode: compute the output size using floor instead of ceil,
#            which is consistent of caffe and CuDNN's convention.
1065 1066 1067 1068 1069 1070 1071
def cnn_output_size(img_size, filter_size, padding, stride, caffe_mode):
    output = (2 * padding + img_size - filter_size) / float(stride)
    if caffe_mode:
        return 1 + int(math.floor(output))
    else:
        return 1 + int(math.ceil(output))

Q
qijun 已提交
1072

1073
#calcualte image_size based on output_size for de-convolution (ConvTransLayer).
L
Luo Tao 已提交
1074
#It is the reverse function of cnn_output_size
1075
def cnn_image_size(output_size, filter_size, padding, stride, caffe_mode):
L
Luo Tao 已提交
1076 1077 1078
    img_size = (output_size - 1) * stride + filter_size - 2 * padding
    if not caffe_mode:
        img_size = img_size + 1
1079 1080
    return img_size

Q
qijun 已提交
1081

L
Luo Tao 已提交
1082
def get_img_size(input_layer_name, channels):
L
Luo Tao 已提交
1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100
    input = g_layer_map[input_layer_name]
    img_pixels = input.size / channels
    img_size = input.width if input.width > 0 else int(img_pixels**0.5)
    img_size_y = input.height if input.height > 0 else int(img_pixels /
                                                           img_size)
    config_assert(
        img_size * img_size_y == img_pixels,
        "Input layer %s: Incorrect input image size %d * %d for input image pixels %d"
        % (input_layer_name, img_size, img_size_y, img_pixels))
    return img_size, img_size_y


def parse_bilinear(bilinear, input_layer_name, bilinear_conf):
    parse_image(bilinear, input_layer_name, bilinear_conf.image_conf)
    bilinear_conf.out_size_x = bilinear.out_size_x
    bilinear_conf.out_size_y = bilinear.out_size_y


Z
zhangjinchao01 已提交
1101 1102
def parse_pool(pool, input_layer_name, pool_conf):
    pool_conf.pool_type = pool.pool_type
Q
qijun 已提交
1103 1104 1105
    config_assert(pool.pool_type in [
        'max-projection', 'avg-projection', 'cudnn-max-pool', 'cudnn-avg-pool'
    ], "pool-type %s is not in "
Z
zhangjinchao01 已提交
1106
                  "['max-projection', 'avg-projection', "
Q
qijun 已提交
1107
                  "'cudnn-max-pool', 'cudnn-avg-pool']" % pool.pool_type)
Z
zhangjinchao01 已提交
1108 1109 1110 1111 1112 1113

    pool_conf.channels = pool.channels
    pool_conf.size_x = pool.size_x
    pool_conf.stride = pool.stride

    pool_conf.size_y = default(pool.size_y, pool_conf.size_x)
Q
qijun 已提交
1114
    pool_conf.stride_y = default(pool.stride_y, pool_conf.stride)
Z
zhangjinchao01 已提交
1115

L
Luo Tao 已提交
1116
    pool_conf.img_size, pool_conf.img_size_y = \
L
Luo Tao 已提交
1117
        get_img_size(input_layer_name, pool.channels)
Z
zhangjinchao01 已提交
1118

1119
    config_assert(not pool.start, "start is deprecated in pooling.")
Z
zhangjinchao01 已提交
1120

1121
    if pool.padding is not None:
Z
zhangjinchao01 已提交
1122
        pool_conf.padding = pool.padding
1123
    pool_conf.padding_y = default(pool.padding_y, pool_conf.padding)
D
dangqingqing 已提交
1124 1125 1126 1127 1128 1129
    pool_conf.output_x = cnn_output_size(pool_conf.img_size, pool_conf.size_x,
                                         pool_conf.padding, pool_conf.stride,
                                         False)
    pool_conf.output_y = cnn_output_size(pool_conf.img_size_y, pool_conf.size_y,
                                         pool_conf.padding_y,
                                         pool_conf.stride_y, False)
Q
qijun 已提交
1130

Z
zhangjinchao01 已提交
1131

Q
qijun 已提交
1132
def parse_spp(spp, input_layer_name, spp_conf):
L
Luo Tao 已提交
1133
    parse_image(spp, input_layer_name, spp_conf.image_conf)
Q
qijun 已提交
1134 1135
    spp_conf.pool_type = spp.pool_type
    config_assert(spp.pool_type in ['max-projection', 'avg-projection'],
Q
qijun 已提交
1136 1137
                  "pool-type %s is not in "
                  "['max-projection', 'avg-projection']" % spp.pool_type)
Q
qijun 已提交
1138
    spp_conf.pyramid_height = spp.pyramid_height
Q
qijun 已提交
1139

Q
qijun 已提交
1140

Z
zhangjinchao01 已提交
1141 1142
def parse_image(image, input_layer_name, image_conf):
    image_conf.channels = image.channels
L
Luo Tao 已提交
1143
    image_conf.img_size, image_conf.img_size_y = \
L
Luo Tao 已提交
1144
        get_img_size(input_layer_name, image_conf.channels)
Q
qijun 已提交
1145

Z
zhangjinchao01 已提交
1146 1147 1148 1149

def parse_norm(norm, input_layer_name, norm_conf):
    norm_conf.norm_type = norm.norm_type
    config_assert(norm.norm_type in ['rnorm', 'cmrnorm-projection'],
Q
qijun 已提交
1150 1151
                  "norm-type %s is not in [rnorm, 'cmrnorm-projection']" %
                  norm.norm_type)
Z
zhangjinchao01 已提交
1152 1153 1154 1155 1156 1157
    norm_conf.channels = norm.channels
    norm_conf.size = norm.size
    norm_conf.scale = norm.scale
    norm_conf.pow = norm.pow
    norm_conf.blocked = norm.blocked

L
Luo Tao 已提交
1158
    norm_conf.img_size, norm_conf.img_size_y = \
L
Luo Tao 已提交
1159
        get_img_size(input_layer_name, norm.channels)
Z
zhangjinchao01 已提交
1160
    norm_conf.output_x = norm_conf.img_size
L
Luo Tao 已提交
1161
    norm_conf.output_y = norm_conf.img_size_y
Z
zhangjinchao01 已提交
1162 1163 1164
    if norm.norm_type in ['cmrnorm-projection']:
        norm_conf.scale /= norm.size
    else:
Q
qijun 已提交
1165 1166
        norm_conf.scale /= norm.size**2

1167

L
Luo Tao 已提交
1168 1169
#caffe_mode: compute the output size using floor instead of ceil,
#            which is consistent of caffe and CuDNN's convention.
1170
def parse_conv(conv, input_layer_name, conv_conf, num_filters, trans=False):
Z
zhangjinchao01 已提交
1171 1172 1173 1174 1175 1176 1177 1178 1179
    conv_conf.filter_size = conv.filter_size
    conv_conf.filter_size_y = conv.filter_size_y
    conv_conf.channels = conv.channels
    conv_conf.padding = conv.padding
    conv_conf.padding_y = conv.padding_y
    conv_conf.stride = conv.stride
    conv_conf.stride_y = conv.stride_y
    conv_conf.groups = conv.groups
    conv_conf.caffe_mode = conv.caffe_mode
Q
qijun 已提交
1180

1181
    if not trans:
1182
        conv_conf.filter_channels = conv.channels / conv.groups
L
Luo Tao 已提交
1183
        conv_conf.img_size, conv_conf.img_size_y = \
L
Luo Tao 已提交
1184
            get_img_size(input_layer_name, conv.channels)
1185
        conv_conf.output_x = cnn_output_size(
Q
qijun 已提交
1186 1187
            conv_conf.img_size, conv_conf.filter_size, conv_conf.padding,
            conv_conf.stride, conv_conf.caffe_mode)
L
Luo Tao 已提交
1188 1189 1190
        conv_conf.output_y = cnn_output_size(
            conv_conf.img_size_y, conv_conf.filter_size_y, conv_conf.padding_y,
            conv_conf.stride_y, conv_conf.caffe_mode)
1191
    else:
1192
        conv_conf.filter_channels = num_filters / conv.groups
L
Luo Tao 已提交
1193
        conv_conf.output_x, conv_conf.output_y = \
L
Luo Tao 已提交
1194
            get_img_size(input_layer_name, conv.channels)
1195
        conv_conf.img_size = cnn_image_size(
Q
qijun 已提交
1196 1197
            conv_conf.output_x, conv_conf.filter_size, conv_conf.padding,
            conv_conf.stride, conv_conf.caffe_mode)
L
Luo Tao 已提交
1198
        conv_conf.img_size_y = cnn_image_size(
L
Luo Tao 已提交
1199 1200
            conv_conf.output_y, conv_conf.filter_size_y, conv_conf.padding_y,
            conv_conf.stride_y, conv_conf.caffe_mode)
Q
qijun 已提交
1201

1202

Z
zhangjinchao01 已提交
1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215
def parse_block_expand(block_expand, input_layer_name, block_expand_conf):
    block_expand_conf.channels = block_expand.channels
    block_expand_conf.stride_x = block_expand.stride_x
    block_expand_conf.stride_y = block_expand.stride_y
    block_expand_conf.padding_x = block_expand.padding_x
    block_expand_conf.padding_y = block_expand.padding_y
    block_expand_conf.block_x = block_expand.block_x
    block_expand_conf.block_y = block_expand.block_y
    block_expand_conf.img_size_x = block_expand.img_size_x
    block_expand_conf.img_size_y = block_expand.img_size_y
    if block_expand_conf.img_size_x == 0:
        block_expand_conf.output_x = 0
    else:
1216
        block_expand_conf.output_x = cnn_output_size(
1217
            block_expand.img_size_x, block_expand.block_x,
1218
            block_expand.padding_x, block_expand.stride_x, False)
Z
zhangjinchao01 已提交
1219 1220

    if block_expand_conf.img_size_y == 0:
1221
        block_expand_conf.output_y = 0
Z
zhangjinchao01 已提交
1222
    else:
1223
        block_expand_conf.output_y = cnn_output_size(
1224
            block_expand.img_size_y, block_expand.block_y,
1225
            block_expand.padding_y, block_expand.stride_y, False)
Z
zhangjinchao01 已提交
1226

Q
qijun 已提交
1227

1228
def parse_maxout(maxout, input_layer_name, maxout_conf):
L
Luo Tao 已提交
1229
    parse_image(maxout, input_layer_name, maxout_conf.image_conf)
1230
    maxout_conf.groups = maxout.groups
1231

Q
qijun 已提交
1232

Z
zhangjinchao01 已提交
1233 1234 1235 1236 1237 1238
# Define an evaluator
@config_func
def Evaluator(
        name,
        type,
        inputs,
Q
qijun 已提交
1239 1240 1241 1242 1243 1244 1245
        chunk_scheme=None,
        num_chunk_types=None,
        classification_threshold=None,
        positive_label=None,
        dict_file=None,
        result_file=None,
        num_results=None,
1246 1247
        delimited=None,
        excluded_chunk_types=None, ):
Z
zhangjinchao01 已提交
1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261
    evaluator = g_config.model_config.evaluators.add()
    evaluator.type = type
    evaluator.name = MakeLayerNameInSubmodel(name)
    if type_of(inputs) == str:
        inputs = [inputs]

    evaluator.input_layers.extend(
        [MakeLayerNameInSubmodel(name) for name in inputs])

    if chunk_scheme is not None:
        evaluator.chunk_scheme = chunk_scheme
        evaluator.num_chunk_types = num_chunk_types
    g_current_submodel.evaluator_names.append(evaluator.name)

1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274
    if classification_threshold is not None:
        evaluator.classification_threshold = classification_threshold
    if positive_label is not None:
        evaluator.positive_label = positive_label
    if dict_file is not None:
        evaluator.dict_file = dict_file

    if result_file is not None:
        evaluator.result_file = result_file
    if num_results is not None:
        evaluator.num_results = num_results
    if delimited is not None:
        evaluator.delimited = delimited
Z
zhangjinchao01 已提交
1275

1276 1277 1278
    if excluded_chunk_types:
        evaluator.excluded_chunk_types.extend(excluded_chunk_types)

Q
qijun 已提交
1279

Z
zhangjinchao01 已提交
1280 1281 1282 1283 1284
class LayerBase(object):
    def __init__(
            self,
            name,
            type,
Q
qijun 已提交
1285
            size,  # size can be 0. In this case, subclass should set it.
Z
zhangjinchao01 已提交
1286 1287 1288 1289
            inputs,
            device=None,
            active_type="",
            drop_rate=0.,
1290
            coeff=None):
Z
zhangjinchao01 已提交
1291
        config_assert('@' not in name,
Q
qijun 已提交
1292
                      "layer name: %s contain special character @" % name)
Z
zhangjinchao01 已提交
1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307
        global g_current_submodel
        name = MakeLayerNameInSubmodel(name)

        config_assert(name not in g_layer_map,
                      'Duplicated layer name: %s' % name)

        self.inputs = copy.deepcopy(inputs)
        self.operators = []

        if self.inputs is None:
            self.inputs = []
        elif type_of(self.inputs) != list:
            self.inputs = [self.inputs]

        self.config = g_config.model_config.layers.add()
1308
        assert isinstance(self.config, LayerConfig)
Z
zhangjinchao01 已提交
1309 1310 1311
        self.config.name = name
        self.config.type = type
        self.config.active_type = active_type
1312 1313
        if coeff is not None:
            self.config.coeff = float(coeff)
Z
zhangjinchao01 已提交
1314 1315 1316 1317 1318 1319 1320
        if size != 0:
            self.config.size = size
        if drop_rate != 0:
            self.config.drop_rate = drop_rate

        if device is not None:
            self.config.device = device
1321
        elif g_default_device is not None:
Z
zhangjinchao01 已提交
1322 1323 1324 1325 1326 1327 1328 1329 1330
            self.config.device = g_default_device

        for input_index in xrange(len(self.inputs)):
            input = self.inputs[input_index]
            input_config = None
            input_layer_name = ''
            if type_of(input) == str:
                input_layer_name = input
                input_config = Input(
Q
qijun 已提交
1331 1332
                    input_layer_name=input,
                    parameter_name=gen_parameter_name(name, input_index))
Z
zhangjinchao01 已提交
1333 1334 1335 1336 1337 1338 1339 1340
                input_layer_name = input_config.input_layer_name
            elif isinstance(input, Input):
                input_layer_name = input.input_layer_name
                input_config = input
                if input_config.parameter_name is None:
                    input_config.parameter_name = \
                        gen_parameter_name(name, input_index)
            elif isinstance(input, Operator):
Q
qijun 已提交
1341
                self.operators.append(input)
Z
zhangjinchao01 已提交
1342 1343 1344 1345
                input.operator_conf.input_indices.append(input_index)
                input_config = Input(input.input_layer_names[0])
                input_layer_name = input_config.input_layer_name
            else:
Q
qijun 已提交
1346
                raise ValueError('Wrong type for inputs: %s' % type_of(input))
Z
zhangjinchao01 已提交
1347
            config_assert(input_layer_name in g_layer_map,
Q
qijun 已提交
1348 1349
                          "Unknown input layer '%s' for layer %s" %
                          (input_layer_name, name))
Z
zhangjinchao01 已提交
1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360
            self.inputs[input_index] = input_config
            layer_input = self.config.inputs.add()
            layer_input.input_layer_name = input_config.input_layer_name
            if input_config.input_layer_argument is not None:
                layer_input.input_layer_argument = \
                    input_config.input_layer_argument

        g_layer_map[name] = self.config

        g_current_submodel.layer_names.append(self.config.name)

L
Luo Tao 已提交
1361 1362 1363 1364 1365 1366
        if self.config.type != 'data' and g_pass_height_width:
            height = self.get_input_layer(0).height
            width = self.get_input_layer(0).width
            if height and width:
                self.set_layer_height_width(height, width)

Z
zhangjinchao01 已提交
1367 1368 1369 1370 1371 1372
    def get_input_layer(self, input_index):
        return g_layer_map[self.config.inputs[input_index].input_layer_name]

    # will return the bias created if not *for_self*
    def create_bias_parameter(
            self,
Q
qijun 已提交
1373
            bias,  # True/False or BiasCfg
Z
zhangjinchao01 已提交
1374
            size,
Q
qijun 已提交
1375 1376 1377
            dims=None,
            for_self=True,  # whether create bias for layer self
    ):
Z
zhangjinchao01 已提交
1378 1379 1380 1381 1382 1383

        if size == 0:
            return
        if dims is None:
            dims = [1, size]

Q
qijun 已提交
1384 1385 1386
        config_assert(
            type_of(bias) == bool or type_of(bias) == Bias,
            'Incorrect type for bias: %s' % type_of(bias))
Z
zhangjinchao01 已提交
1387 1388 1389 1390 1391 1392 1393 1394 1395

        if type_of(bias) == bool:
            if bias:
                bias = Bias()

        if type_of(bias) == Bias:
            if bias.parameter_name is None:
                bias.parameter_name = gen_bias_parameter_name(self.config.name)
            if bias.parameter_name not in g_parameter_map:
1396 1397
                assert isinstance(self.config, LayerConfig)

Z
zhangjinchao01 已提交
1398 1399 1400
                Parameter(
                    bias.parameter_name,
                    size,
Q
qijun 已提交
1401 1402
                    self.config.device
                    if self.config.HasField('device') else None,
Z
zhangjinchao01 已提交
1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413
                    dims,
                    bias.learning_rate,
                    bias.momentum,
                    decay_rate=bias.decay_rate,
                    decay_rate_l1=bias.decay_rate_l1,
                    initial_mean=bias.initial_mean,
                    initial_std=bias.initial_std,
                    initial_strategy=bias.initial_strategy,
                    initial_smart=bias.initial_smart,
                    num_batches_regularization=bias.num_batches_regularization,
                    sparse_remote_update=bias.sparse_remote_update,
Q
qijun 已提交
1414 1415
                    gradient_clipping_threshold=bias.
                    gradient_clipping_threshold,
Z
zhangjinchao01 已提交
1416
                    is_static=bias.is_static,
Q
qijun 已提交
1417
                    is_shared=bias.is_shared, )
Z
zhangjinchao01 已提交
1418 1419 1420 1421 1422
            if for_self:
                self.config.bias_parameter_name = bias.parameter_name
            else:
                return bias.parameter_name

Q
qijun 已提交
1423 1424 1425 1426 1427 1428
    def create_input_parameter(self,
                               input_index,
                               size,
                               dims=None,
                               sparse=None,
                               format=None):
Z
zhangjinchao01 已提交
1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442
        if dims is None:
            # TODO(yuyang18): print warning and callstack here!
            dims = list()

        if size == 0:
            return

        input_config = self.inputs[input_index]

        self.config.inputs[input_index].input_parameter_name = \
            input_config.parameter_name

        if input_config.parameter_name in g_parameter_map:
            para = g_parameter_map[input_config.parameter_name]
Q
qijun 已提交
1443 1444
            config_assert(size == para.size, (
                'Shared parameter "%s" does not ' + 'have same size: %s vs. %s')
Z
zhangjinchao01 已提交
1445 1446
                          % (input_config.parameter_name, para.size, size))

Q
qijun 已提交
1447 1448
            config_assert(dims == para.dims, (
                'Shared parameter "%s" does not ' + 'have same dims: %s vs. %s')
Z
zhangjinchao01 已提交
1449 1450 1451 1452 1453 1454
                          % (input_config.parameter_name, para.dims, dims))
            return

        Parameter(
            input_config.parameter_name,
            size,
1455
            self.config.device if self.config.HasField("device") else None,
Z
zhangjinchao01 已提交
1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467
            dims,
            input_config.learning_rate,
            input_config.momentum,
            decay_rate=input_config.decay_rate,
            decay_rate_l1=input_config.decay_rate_l1,
            initial_mean=input_config.initial_mean,
            initial_std=input_config.initial_std,
            initial_strategy=input_config.initial_strategy,
            initial_smart=input_config.initial_smart,
            num_batches_regularization=input_config.num_batches_regularization,
            sparse_remote_update=input_config.sparse_remote_update,
            sparse_update=input_config.sparse_update,
Q
qijun 已提交
1468 1469
            gradient_clipping_threshold=input_config.
            gradient_clipping_threshold,
Z
zhangjinchao01 已提交
1470 1471 1472 1473
            sparse=sparse,
            format=format,
            is_static=input_config.is_static,
            is_shared=input_config.is_shared,
Q
qijun 已提交
1474
            update_hooks=input_config.update_hooks)
Z
zhangjinchao01 已提交
1475 1476 1477 1478 1479 1480 1481 1482 1483

    def set_layer_size(self, size):
        if self.config.size == 0:
            self.config.size = size
        else:
            config_assert(self.config.size == size,
                          'Different inputs result in' +
                          'different layer size at layer %s' % self.config.name)

L
Luo Tao 已提交
1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500
    def set_layer_height_width(self, height, width):
        self.config.height = height
        self.config.width = width

    def set_cnn_layer(self,
                      input_layer_name,
                      height,
                      width,
                      channels,
                      is_print=True):
        size = height * width * channels
        self.set_layer_size(size)
        self.set_layer_height_width(height, width)
        if is_print:
            print("output for %s: c = %d, h = %d, w = %d, size = %d" %
                  (input_layer_name, channels, height, width, size))

Q
qijun 已提交
1501

Z
zhangjinchao01 已提交
1502 1503
@config_layer('multi_class_cross_entropy_with_selfnorm')
class MultiClassCrossEntropySelfNormCostLayer(LayerBase):
Q
qijun 已提交
1504 1505 1506
    def __init__(self, name, inputs, softmax_selfnorm_alpha=0.1, **xargs):
        super(MultiClassCrossEntropySelfNormCostLayer, self).__init__(
            name, 'multi_class_cross_entropy_with_selfnorm', 0, inputs, **xargs)
Z
zhangjinchao01 已提交
1507 1508
        self.config.softmax_selfnorm_alpha = softmax_selfnorm_alpha

Q
qijun 已提交
1509

Z
zhangjinchao01 已提交
1510 1511
@config_layer('fc')
class FCLayer(LayerBase):
Q
qijun 已提交
1512
    def __init__(self, name, size, inputs, bias=True, **xargs):
Z
zhangjinchao01 已提交
1513 1514 1515 1516 1517 1518 1519 1520 1521 1522
        super(FCLayer, self).__init__(name, 'fc', size, inputs=inputs, **xargs)
        for input_index in xrange(len(self.inputs)):
            input_layer = self.get_input_layer(input_index)
            psize = self.config.size * input_layer.size
            dims = [input_layer.size, self.config.size]
            format = self.inputs[input_index].format
            sparse = format == "csr" or format == "csc"

            if sparse:
                psize = self.inputs[input_index].nnz
1523 1524
            else:
                sparse = None
Z
zhangjinchao01 已提交
1525

Q
qijun 已提交
1526 1527
            self.create_input_parameter(input_index, psize, dims, sparse,
                                        format)
Z
zhangjinchao01 已提交
1528 1529
        self.create_bias_parameter(bias, self.config.size)

Q
qijun 已提交
1530

Z
zhangjinchao01 已提交
1531 1532
@config_layer('selective_fc')
class SelectiveFCLayer(LayerBase):
Q
qijun 已提交
1533 1534 1535 1536 1537 1538 1539 1540 1541 1542
    def __init__(self,
                 name,
                 size,
                 inputs,
                 bias=True,
                 selective_fc_pass_generation=False,
                 has_selected_colums=True,
                 selective_fc_full_mul_ratio=0.02,
                 selective_fc_parallel_plain_mul_thread_num=None,
                 **xargs):
Z
zhangjinchao01 已提交
1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562
        super(SelectiveFCLayer, self).__init__(
            name, 'selective_fc', size, inputs=inputs, **xargs)
        # user MUST know if selctive fc is used in training,
        # parameter matrices saved by this layer are automatically transposed,
        # BUT bias is not.

        # if selective_fc is used only in testing mode, and parameters for
        # this layer are trained by fully connected layers,
        # then TranposedFullMatrixProjectin MUST be used in training
        # to avoid manual transpose in testing.

        self.config.selective_fc_pass_generation = selective_fc_pass_generation
        self.config.has_selected_colums = has_selected_colums
        self.config.selective_fc_full_mul_ratio = selective_fc_full_mul_ratio
        if selective_fc_parallel_plain_mul_thread_num is not None:
            self.config.selective_fc_parallel_plain_mul_thread_num = selective_fc_parallel_plain_mul_thread_num

        input_num = len(self.inputs)
        if has_selected_colums:
            config_assert(input_num >= 2,
Q
qijun 已提交
1563 1564
                          ("if indices of selected columns are not specified, "
                           "selective_fc Layer has at least two inputs"))
Z
zhangjinchao01 已提交
1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576
            input_num -= 1

        for input_index in xrange(input_num):
            input_layer = self.get_input_layer(input_index)
            psize = self.config.size * input_layer.size
            dims = [input_layer.size, self.config.size]
            dims = dims[::-1]  # transpose the parameter
            format = self.inputs[input_index].format
            sparse = format == "csr" or format == "csc"
            if sparse:
                psize = self.inputs[input_index].nnz

Q
qijun 已提交
1577 1578
            self.create_input_parameter(input_index, psize, dims, sparse,
                                        format)
Z
zhangjinchao01 已提交
1579 1580
        self.create_bias_parameter(bias, self.config.size)

Q
qijun 已提交
1581

1582 1583
@config_layer('print')
class PrintLayer(LayerBase):
Q
qijun 已提交
1584
    def __init__(self, name, inputs):
1585 1586
        super(PrintLayer, self).__init__(name, 'print', 0, inputs)

Q
qijun 已提交
1587

Z
zhangjinchao01 已提交
1588 1589
@config_layer('data')
class DataLayer(LayerBase):
L
Luo Tao 已提交
1590
    def __init__(self, name, size, height=None, width=None, device=None):
Q
qijun 已提交
1591 1592
        super(DataLayer, self).__init__(
            name, 'data', size, inputs=[], device=device)
L
Luo Tao 已提交
1593 1594
        if height and width:
            self.set_layer_height_width(height, width)
Q
qijun 已提交
1595

Z
zhangjinchao01 已提交
1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622

'''
DataNormLayer: A layer for data normalization
Input: One and only one input layer is accepted. The input layer must
       be DataLayer with dense data type
Output: The normalization of the input data

Reference:
    LA Shalabi, Z Shaaban, B Kasasbeh. Data mining: A preprocessing engine

Example:
    Layer(
        name = "norm_input_layer",
        type = "data_norm",
        inputs = [Input("input_layer",
                        parameter_name = "_slot0.stats")],
        data_norm_strategy = "z-score",
    )

Note:
  (1) The parameter has been calculated in the preprocessing stage,
      and should be initialized by --init_model_path when training.
  (2) Three data normalization methoeds are considered
          z-score: y = (x-mean)/std
          min-max: y = (x-min)/(max-min)
          decimal-scaling: y = x/10^j, where j is the smallest integer such that max(|y|)<1
'''
Q
qijun 已提交
1623 1624


Z
zhangjinchao01 已提交
1625 1626
@config_layer('data_norm')
class DataNormLayer(LayerBase):
Q
qijun 已提交
1627
    def __init__(self, name, inputs, data_norm_strategy="z-score", device=None):
Z
zhangjinchao01 已提交
1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638
        super(DataNormLayer, self).__init__(
            name, 'data_norm', 0, inputs=inputs, device=device)
        self.config.data_norm_strategy = data_norm_strategy
        config_assert(len(inputs) == 1, 'DataNormLayer must have 1 input')
        input_layer = self.get_input_layer(0)
        self.set_layer_size(input_layer.size)
        para_size = 5 * input_layer.size
        para_dims = [5, input_layer.size]
        self.inputs[0].is_static = True
        self.create_input_parameter(0, para_size, para_dims)

Q
qijun 已提交
1639

Z
zhangjinchao01 已提交
1640 1641 1642
@config_layer('prelu')
class ParameterReluLayer(LayerBase):
    layer_type = 'prelu'
Q
qijun 已提交
1643 1644

    def __init__(self, name, inputs, partial_sum=1, **args):
Z
zhangjinchao01 已提交
1645 1646 1647 1648 1649 1650 1651 1652
        super(ParameterReluLayer, self).__init__(
            name, self.layer_type, 0, inputs=inputs, **args)
        config_assert(len(self.inputs) == 1)
        config_assert(self.input_layer.size % partial_sum == 0)
        input_layer = self.get_input_layer(0)
        self.set_layer_size(input_layer.size)
        self.create_input_parameter(0, input_layer.size / partial_sum)

Q
qijun 已提交
1653

Z
zhangjinchao01 已提交
1654 1655 1656
@config_layer('conv')
class ConvLayerBase(LayerBase):
    layer_type = 'conv'
Q
qijun 已提交
1657 1658 1659 1660 1661 1662 1663 1664

    def __init__(self,
                 name,
                 inputs=[],
                 bias=True,
                 num_filters=None,
                 shared_biases=False,
                 **xargs):
Z
zhangjinchao01 已提交
1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680
        super(ConvLayerBase, self).__init__(
            name, self.layer_type, 0, inputs=inputs, **xargs)

        if num_filters is not None:
            self.config.num_filters = num_filters

        use_gpu = int(g_command_config_args.get("use_gpu", 0))
        parallel_nn = int(g_command_config_args.get("parallel_nn", 0))

        # Automatically select cudnn_type for GPU and exconv for CPU
        # if set type=conv, but still reserve the way user specify
        # exconv or cudnn_conv manually.
        if self.layer_type == "cudnn_conv":
            config_assert(use_gpu, "cudnn_conv only support GPU")

        if (use_gpu == 1 and self.layer_type != "exconv" and
Q
qijun 已提交
1681
            (parallel_nn == 0 or self.config.device > -1)):
Z
zhangjinchao01 已提交
1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693
            self.layer_type = "cudnn_conv"
        else:
            self.layer_type = "exconv"
        # need to specify layer in config
        self.config.type = self.layer_type

        if shared_biases is not None:
            self.config.shared_biases = shared_biases

        for input_index in xrange(len(self.inputs)):
            input_layer = self.get_input_layer(input_index)
            conv_conf = self.config.inputs[input_index].conv_conf
L
Luo Tao 已提交
1694 1695
            parse_conv(self.inputs[input_index].conv, input_layer.name,
                       conv_conf, num_filters)
Z
zhangjinchao01 已提交
1696 1697
            psize = self.calc_parameter_size(conv_conf)
            self.create_input_parameter(input_index, psize)
L
Luo Tao 已提交
1698 1699
            self.set_cnn_layer(name, conv_conf.output_y, conv_conf.output_x,
                               self.config.num_filters)
Z
zhangjinchao01 已提交
1700 1701 1702 1703 1704 1705 1706 1707 1708 1709

        psize = self.config.size
        if shared_biases:
            psize = self.config.num_filters
        self.create_bias_parameter(bias, psize, [psize, 1])

    def calc_parameter_size(self, conv_conf):
        return self.config.num_filters * conv_conf.filter_channels \
                    * (conv_conf.filter_size * conv_conf.filter_size_y)

Q
qijun 已提交
1710

Z
zhangjinchao01 已提交
1711 1712 1713 1714
@config_layer('exconv')
class ConvLayer(ConvLayerBase):
    layer_type = 'exconv'

Q
qijun 已提交
1715

Z
zhangjinchao01 已提交
1716 1717 1718 1719
@config_layer('cudnn_conv')
class ConvLayer(ConvLayerBase):
    layer_type = 'cudnn_conv'

1720 1721 1722 1723

@config_layer('convt')
class ConvTransLayerBase(LayerBase):
    layer_type = 'convt'
Q
qijun 已提交
1724 1725 1726 1727 1728 1729 1730 1731

    def __init__(self,
                 name,
                 inputs=[],
                 bias=True,
                 num_filters=None,
                 shared_biases=False,
                 **xargs):
1732
        super(ConvTransLayerBase, self).__init__(
1733 1734 1735 1736 1737 1738 1739 1740
            name, self.layer_type, 0, inputs=inputs, **xargs)

        if num_filters is not None:
            self.config.num_filters = num_filters

        use_gpu = int(g_command_config_args.get("use_gpu", 0))
        parallel_nn = int(g_command_config_args.get("parallel_nn", 0))

1741 1742
        # cudnn_convt has not been implemented so use exconvt only
        self.layer_type = "exconvt"
1743 1744 1745 1746 1747 1748 1749 1750
        # need to specify layer in config
        self.config.type = self.layer_type

        if shared_biases is not None:
            self.config.shared_biases = shared_biases

        for input_index in xrange(len(self.inputs)):
            input_layer = self.get_input_layer(input_index)
1751
            parse_conv(
1752 1753
                self.inputs[input_index].conv,
                input_layer.name,
1754
                self.config.inputs[input_index].conv_conf,
1755
                num_filters,
1756
                trans=True)
1757 1758 1759 1760 1761
            conv_conf = self.config.inputs[input_index].conv_conf
            psize = self.calc_parameter_size(conv_conf)
            print("output size for %s is %d " % (name, conv_conf.output_x))
            self.create_input_parameter(input_index, psize)
            self.set_layer_size(
Q
qijun 已提交
1762
                (conv_conf.img_size**2) * self.config.num_filters)
1763 1764 1765 1766 1767 1768 1769

        psize = self.config.size
        if shared_biases:
            psize = self.config.num_filters
        self.create_bias_parameter(bias, psize, [psize, 1])

    def calc_parameter_size(self, conv_conf):
1770
        return conv_conf.channels * conv_conf.filter_channels \
1771 1772
                    * (conv_conf.filter_size * conv_conf.filter_size_y)

Q
qijun 已提交
1773

1774 1775 1776 1777
@config_layer('exconvt')
class ConvTransLayer(ConvTransLayerBase):
    layer_type = 'exconvt'

Q
qijun 已提交
1778

Z
zhangjinchao01 已提交
1779 1780
@config_layer('norm')
class NormLayer(LayerBase):
Q
qijun 已提交
1781 1782 1783
    def __init__(self, name, inputs, device=None):
        super(NormLayer, self).__init__(
            name, 'norm', 0, inputs=inputs, device=device)
Z
zhangjinchao01 已提交
1784 1785 1786
        for input_index in xrange(len(self.inputs)):
            input_layer = self.get_input_layer(input_index)
            norm_conf = self.config.inputs[input_index].norm_conf
L
Luo Tao 已提交
1787 1788 1789 1790
            parse_norm(self.inputs[input_index].norm, input_layer.name,
                       norm_conf)
            self.set_cnn_layer(name, norm_conf.output_y, norm_conf.output_x,
                               norm_conf.channels, False)
Q
qijun 已提交
1791

Z
zhangjinchao01 已提交
1792 1793 1794

@config_layer('pool')
class PoolLayer(LayerBase):
Q
qijun 已提交
1795 1796 1797
    def __init__(self, name, inputs, device=None):
        super(PoolLayer, self).__init__(
            name, 'pool', 0, inputs=inputs, device=device)
Z
zhangjinchao01 已提交
1798 1799 1800
        for input_index in xrange(len(self.inputs)):
            input_layer = self.get_input_layer(input_index)
            pool_conf = self.config.inputs[input_index].pool_conf
L
Luo Tao 已提交
1801 1802 1803 1804
            parse_pool(self.inputs[input_index].pool, input_layer.name,
                       pool_conf)
            self.set_cnn_layer(name, pool_conf.output_y, pool_conf.output_x,
                               pool_conf.channels)
Q
qijun 已提交
1805

Z
zhangjinchao01 已提交
1806

Q
qijun 已提交
1807 1808
@config_layer('spp')
class SpatialPyramidPoolLayer(LayerBase):
Q
qijun 已提交
1809 1810 1811
    def __init__(self, name, inputs, device=None):
        super(SpatialPyramidPoolLayer, self).__init__(
            name, 'spp', 0, inputs=inputs, device=device)
Q
qijun 已提交
1812 1813 1814
        for input_index in xrange(len(self.inputs)):
            input_layer = self.get_input_layer(input_index)
            spp_conf = self.config.inputs[input_index].spp_conf
L
Luo Tao 已提交
1815 1816 1817
            parse_spp(self.inputs[input_index].spp, input_layer.name, spp_conf)
            output_x = (pow(4, spp_conf.pyramid_height) - 1) / (4 - 1)
            self.set_cnn_layer(name, 1, output_x, spp_conf.image_conf.channels)
Q
qijun 已提交
1818

Q
qijun 已提交
1819

Z
zhangjinchao01 已提交
1820 1821 1822
@config_layer('batch_norm')
class BatchNormLayer(LayerBase):
    layer_type = 'batch_norm'
Q
qijun 已提交
1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833

    def __init__(self,
                 name,
                 inputs,
                 active_type="linear",
                 bias=True,
                 device=None,
                 use_global_stats=True,
                 moving_average_fraction=0.9,
                 batch_norm_type=None,
                 **xargs):
Z
zhangjinchao01 已提交
1834 1835 1836 1837
        if inputs is None:
            inputs = []
        elif not isinstance(inputs, list):
            inputs = [inputs]
Q
qijun 已提交
1838 1839
        config_assert(
            len(inputs) == 1, "BatchNormLayer must have one and only one input")
Z
zhangjinchao01 已提交
1840 1841 1842 1843 1844 1845 1846 1847
        # Create Input for moving mean and std,
        # in batch normalization layer.
        # These paras no need to update, so set is_static is true.
        # If not use is_static, even set learning_rate = 0, decay_rate = 0,
        # these paras will change if set average_window in configure.
        use_gpu = bool(int(g_command_config_args.get("use_gpu", 0)))
        is_shared = True if not use_gpu else False
        for i in xrange(2):
Q
qijun 已提交
1848 1849 1850 1851 1852 1853
            inputs.append(
                Input(
                    inputs[0].input_layer_name,
                    initial_std=0.0,
                    initial_mean=0.0,
                    is_static=True,
1854 1855
                    is_shared=is_shared,
                    not_make_layer_name_in_submodel=True, ))
Z
zhangjinchao01 已提交
1856 1857 1858 1859 1860 1861 1862

        parallel_nn = bool(int(g_command_config_args.get("parallel_nn", 0)))
        cudnn_version = int(g_command_config_args.get("cudnn_version", 0))
        # Automatically select cudnn_batch_norm for GPU and batch_norm for CPU.
        # Also based on cudnn version.
        use_cudnn = use_gpu and batch_norm_type != "batch_norm" and \
            ((not parallel_nn) or self.config.device > -1) and \
1863
            cudnn_version >= 4007
Z
zhangjinchao01 已提交
1864
        self.layer_type = "cudnn_batch_norm" if use_cudnn else "batch_norm"
Q
qijun 已提交
1865 1866 1867 1868 1869 1870 1871 1872
        super(BatchNormLayer, self).__init__(
            name,
            self.layer_type,
            0,
            active_type=active_type,
            inputs=inputs,
            device=device,
            **xargs)
Z
zhangjinchao01 已提交
1873 1874 1875 1876 1877 1878

        if use_global_stats is not None:
            self.config.use_global_stats = use_global_stats
        if moving_average_fraction is not None:
            self.config.moving_average_fraction = moving_average_fraction

Q
qijun 已提交
1879
        input_layer = self.get_input_layer(0)
Z
zhangjinchao01 已提交
1880
        image_conf = self.config.inputs[0].image_conf
L
Luo Tao 已提交
1881
        parse_image(self.inputs[0].image, input_layer.name, image_conf)
1882 1883 1884 1885 1886 1887 1888 1889

        # Only pass the width and height of input to batch_norm layer 
        # when either of it is non-zero. 
        if input_layer.width != 0 or input_layer.height != 0:
            self.set_cnn_layer(name, image_conf.img_size_y, image_conf.img_size,
                               image_conf.channels, True)
        else:
            self.set_layer_size(input_layer.size)
Z
zhangjinchao01 已提交
1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901

        psize = self.calc_parameter_size(image_conf)
        dims = [1, psize]
        self.create_input_parameter(0, psize)
        self.create_input_parameter(1, psize, dims)
        self.create_input_parameter(2, psize, dims)

        self.create_bias_parameter(bias, psize)

    def calc_parameter_size(self, image_conf):
        return image_conf.channels

Q
qijun 已提交
1902

Z
zhangjinchao01 已提交
1903 1904
@config_layer('trans')
class TransLayer(LayerBase):
Q
qijun 已提交
1905 1906 1907 1908 1909 1910
    def __init__(self, name, inputs, device=None):
        super(TransLayer, self).__init__(
            name, 'trans', 0, inputs=inputs, device=device)
        config_assert(
            len(self.inputs) == 1,
            'TransLayer must have one and only one input')
Z
zhangjinchao01 已提交
1911 1912
        self.set_layer_size(self.get_input_layer(0).size)

Q
qijun 已提交
1913

Z
zhangjinchao01 已提交
1914 1915
@config_layer('resize')
class ResizeLayer(LayerBase):
Q
qijun 已提交
1916 1917 1918 1919 1920 1921 1922
    def __init__(self, name, size, inputs, device=None):
        super(ResizeLayer, self).__init__(
            name, 'resize', size=size, inputs=inputs, device=device)
        config_assert(
            len(self.inputs) == 1,
            'ResizeLayer must have one and only one input')

Z
zhangjinchao01 已提交
1923 1924 1925

@config_layer('blockexpand')
class BlockExpandLayer(LayerBase):
Q
qijun 已提交
1926 1927 1928
    def __init__(self, name, inputs, device=None):
        super(BlockExpandLayer, self).__init__(
            name, 'blockexpand', 0, inputs=inputs, device=device)
Z
zhangjinchao01 已提交
1929 1930
        for input_index in xrange(len(self.inputs)):
            input_layer = self.get_input_layer(input_index)
Q
qijun 已提交
1931 1932
            parse_block_expand(
                self.inputs[input_index].block_expand, input_layer.name,
Z
zhangjinchao01 已提交
1933
                self.config.inputs[input_index].block_expand_conf)
Q
qijun 已提交
1934 1935 1936 1937 1938 1939
            block_expand_conf = self.config.inputs[
                input_index].block_expand_conf
            self.set_layer_size(block_expand_conf.block_x *
                                block_expand_conf.block_y *
                                block_expand_conf.channels)

Z
zhangjinchao01 已提交
1940

1941 1942
@config_layer('maxout')
class MaxOutLayer(LayerBase):
Q
qijun 已提交
1943 1944 1945
    def __init__(self, name, inputs, **xargs):
        super(MaxOutLayer, self).__init__(
            name, 'maxout', 0, inputs=inputs, **xargs)
1946 1947
        input_layer = self.get_input_layer(0)
        maxout_conf = self.config.inputs[0].maxout_conf
L
Luo Tao 已提交
1948
        parse_maxout(self.inputs[0].maxout, input_layer.name, maxout_conf)
L
Luo Tao 已提交
1949 1950 1951
        out_channels = maxout_conf.image_conf.channels / maxout_conf.groups
        self.set_cnn_layer(name, g_layer_map[input_layer.name].height,
                           g_layer_map[input_layer.name].width, out_channels)
Q
qijun 已提交
1952

1953

Z
zhangjinchao01 已提交
1954 1955 1956 1957
# key: cost type
# value: cost class
g_cost_map = {}

Q
qijun 已提交
1958

Z
zhangjinchao01 已提交
1959 1960 1961
# define a cost layer without any parameters
def define_cost(class_name, cost_type):
    def init(cls, name, inputs, device=None, coeff=1.):
Q
qijun 已提交
1962 1963
        super(type(cls), cls).__init__(
            name, cost_type, 1, inputs, device=device, coeff=coeff)
Z
zhangjinchao01 已提交
1964

Q
qijun 已提交
1965
    cls = type(class_name, (LayerBase, ), dict(__init__=init))
Z
zhangjinchao01 已提交
1966 1967 1968
    global g_cost_map
    g_cost_map[cost_type] = cls

Q
qijun 已提交
1969

Z
zhangjinchao01 已提交
1970 1971 1972 1973 1974 1975 1976 1977
define_cost('MultiClassCrossEntropy', 'multi-class-cross-entropy')
define_cost('RankingCost', 'rank-cost')
define_cost('AucValidation', 'auc-validation')
define_cost('PnpairValidation', 'pnpair-validation')
define_cost('SumOfSquaresCostLayer', 'square_error')
define_cost('MultiBinaryLabelCrossEntropy', 'multi_binary_label_cross_entropy')
define_cost('SoftBinaryClassCrossEntropy', 'soft_binary_class_cross_entropy')
define_cost('HuberTwoClass', 'huber')
X
xuwei06 已提交
1978
define_cost('SumCost', 'sum_cost')
Z
zhangjinchao01 已提交
1979

Q
qijun 已提交
1980

Z
zhangjinchao01 已提交
1981 1982
@config_layer('hsigmoid')
class HierarchicalSigmoidLayer(LayerBase):
Q
qijun 已提交
1983
    def __init__(self, name, num_classes, inputs, device=None, bias=True):
Z
zhangjinchao01 已提交
1984 1985
        super(HierarchicalSigmoidLayer, self).__init__(
            name, 'hsigmoid', 1, inputs=inputs, device=device)
Q
qijun 已提交
1986 1987 1988
        config_assert(
            len(self.inputs) >= 2,
            'HierarchicalSigmoidLayer must have at least 2 inputs')
Z
zhangjinchao01 已提交
1989 1990 1991 1992 1993 1994 1995 1996
        self.config.num_classes = num_classes
        for input_index in xrange(len(self.inputs) - 1):
            input_layer = self.get_input_layer(input_index)
            psize = (num_classes - 1) * input_layer.size
            dims = [num_classes - 1, input_layer.size]
            self.create_input_parameter(input_index, psize, dims)
        self.create_bias_parameter(bias, num_classes - 1)

Q
qijun 已提交
1997

Z
zhangjinchao01 已提交
1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021
'''
lambdaCost for lambdaRank LTR approach

Usage:
  Example: Layer(name = "cost", type = "lambda_cost", NDCG_num = 8,
             max_sort_size = -1, inputs = ["output", "score"])

  Input data: Samples of the same query should be loaded as a sequence,
          by ProtoDataProvider or PyDataProvider etc.. User should provide
          scores for each sample. The score slot should be the 2nd
          input of lambdaRank layer.

  NDCG_num = the size of NDCG, e.g., 5 for NDCG@5.
    Note: NDCG_num must be less than or equal to the minimum
          size of lists.

  max_sort_size = the size of partial sorting in calculating gradient.
    Note: If max_sort_size = -1, then for each list, the algorithm will
          sort the entire list to get gradient.
          In other cases, max_sort_size must be greater than or equal
          to NDCG_num.
          max_sort_size can be greater than the size of a list, in which
          case the algorithm will sort the entire list to get gradient.
'''
Q
qijun 已提交
2022 2023


Z
zhangjinchao01 已提交
2024 2025
@config_layer('lambda_cost')
class LambdaCost(LayerBase):
Q
qijun 已提交
2026
    def __init__(self, name, inputs, NDCG_num=5, max_sort_size=-1, device=None):
Z
zhangjinchao01 已提交
2027 2028
        super(LambdaCost, self).__init__(
            name, 'lambda_cost', 1, inputs=inputs, device=device)
Q
qijun 已提交
2029
        config_assert(len(self.inputs) == 2, 'lambdaCost must have 2 inputs')
Z
zhangjinchao01 已提交
2030 2031
        self.config.NDCG_num = NDCG_num
        if max_sort_size != -1:
Q
qijun 已提交
2032 2033 2034
            config_assert(
                NDCG_num <= max_sort_size,
                'NDCG_num must be less than or equal to max_sort_size')
Z
zhangjinchao01 已提交
2035 2036
        self.config.max_sort_size = max_sort_size

Q
qijun 已提交
2037

Z
zhangjinchao01 已提交
2038 2039
@config_layer('nce')
class NCELayer(LayerBase):
Q
qijun 已提交
2040 2041 2042 2043 2044 2045 2046 2047
    def __init__(self,
                 name,
                 num_classes,
                 inputs,
                 num_neg_samples=10,
                 neg_sampling_dist=None,
                 bias=True,
                 **xargs):
Z
zhangjinchao01 已提交
2048
        super(NCELayer, self).__init__(name, 'nce', 1, inputs=inputs, **xargs)
Q
qijun 已提交
2049 2050
        config_assert(
            len(self.inputs) >= 2, 'NCELayer must have at least 2 inputs')
Z
zhangjinchao01 已提交
2051 2052
        self.config.num_classes = num_classes
        if neg_sampling_dist is not None:
Q
qijun 已提交
2053 2054 2055 2056
            config_assert(
                len(neg_sampling_dist) == num_classes,
                'len(neg_sampling_dist)(%s) is not same as num_classes (%s)' %
                (len(neg_sampling_dist), num_classes))
Z
zhangjinchao01 已提交
2057
            s = sum(neg_sampling_dist)
Q
qijun 已提交
2058 2059 2060
            config_assert(
                abs(s - 1) < 1e-5,
                'The sum of neg_sampling_dist (%s) is not 1' % s)
Z
zhangjinchao01 已提交
2061 2062 2063 2064 2065

            self.config.neg_sampling_dist.extend(neg_sampling_dist)

        self.config.num_neg_samples = num_neg_samples
        num_real_inputs = len(self.inputs) - 1
Q
qijun 已提交
2066
        input_layer = self.get_input_layer(num_real_inputs)
Z
zhangjinchao01 已提交
2067 2068 2069 2070
        config_assert(input_layer.type == 'data',
                      'Expecting the last input layer of an nce layer to be '
                      'a data layer')

Q
qijun 已提交
2071 2072
        if (num_real_inputs > 1 and input_layer.size == 1 and
                self.get_input_layer(num_real_inputs - 1).type == 'data'):
Z
zhangjinchao01 已提交
2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085
            # This input layer is assumed to be a sample weight layer
            num_real_inputs -= 1

        for input_index in xrange(num_real_inputs):
            input_layer = self.get_input_layer(input_index)
            psize = num_classes * input_layer.size
            dims = [num_classes, input_layer.size]
            self.create_input_parameter(input_index, psize, dims)
        self.create_bias_parameter(bias, num_classes)


@config_layer('addto')
class AddToLayer(LayerBase):
Q
qijun 已提交
2086
    def __init__(self, name, inputs, bias=True, **xargs):
Z
zhangjinchao01 已提交
2087 2088
        super(AddToLayer, self).__init__(
            name, 'addto', 0, inputs=inputs, **xargs)
Q
qijun 已提交
2089
        config_assert(len(inputs) > 0, 'inputs cannot be empty for AddToLayer')
Z
zhangjinchao01 已提交
2090 2091 2092 2093 2094
        for input_index in xrange(len(self.inputs)):
            input_layer = self.get_input_layer(input_index)
            self.set_layer_size(input_layer.size)
        self.create_bias_parameter(bias, self.config.size)

Q
qijun 已提交
2095

Z
zhangjinchao01 已提交
2096 2097
@config_layer('agent')
class AgentLayer(LayerBase):
Q
qijun 已提交
2098 2099 2100 2101
    def __init__(self, name, size, device=None):
        super(AgentLayer, self).__init__(
            name, 'agent', size, inputs=[], device=device)

Z
zhangjinchao01 已提交
2102 2103 2104

@config_layer('sequence_agent')
class SequenceAgentLayer(LayerBase):
Q
qijun 已提交
2105
    def __init__(self, name, size, device=None):
Z
zhangjinchao01 已提交
2106 2107 2108
        super(SequenceAgentLayer, self).__init__(
            name, 'sequence_agent', size, inputs=[], device=device)

Q
qijun 已提交
2109

Z
zhangjinchao01 已提交
2110 2111
@config_layer('gather_agent')
class GatherAgentLayer(LayerBase):
Q
qijun 已提交
2112
    def __init__(self, name, size, device=None):
Z
zhangjinchao01 已提交
2113 2114 2115
        super(GatherAgentLayer, self).__init__(
            name, 'gather_agent', size, inputs=[], device=device)

Q
qijun 已提交
2116

Z
zhangjinchao01 已提交
2117 2118
@config_layer('scatter_agent')
class ScatterAgentLayer(LayerBase):
Q
qijun 已提交
2119
    def __init__(self, name, size, device=None):
Z
zhangjinchao01 已提交
2120 2121 2122
        super(ScatterAgentLayer, self).__init__(
            name, 'scatter_agent', size, inputs=[], device=device)

Q
qijun 已提交
2123

Z
zhangjinchao01 已提交
2124 2125
@config_layer('sequence_gather_agent')
class SequenceGatherAgentLayer(LayerBase):
Q
qijun 已提交
2126
    def __init__(self, name, size, device=None):
Z
zhangjinchao01 已提交
2127
        super(SequenceGatherAgentLayer, self).__init__(
Q
qijun 已提交
2128 2129
            name, 'sequence_gather_agent', size, inputs=[], device=device)

Z
zhangjinchao01 已提交
2130 2131 2132

@config_layer('sequence_scatter_agent')
class SequenceScatterAgentLayer(LayerBase):
Q
qijun 已提交
2133
    def __init__(self, name, size, device=None):
Z
zhangjinchao01 已提交
2134
        super(SequenceScatterAgentLayer, self).__init__(
Q
qijun 已提交
2135 2136
            name, 'sequence_scatter_agent', size, inputs=[], device=device)

Z
zhangjinchao01 已提交
2137 2138 2139

@config_layer('multiplex')
class MultiplexLayer(LayerBase):
Q
qijun 已提交
2140 2141 2142 2143 2144
    def __init__(self, name, inputs, size, device=None):
        super(MultiplexLayer, self).__init__(
            name, 'multiplex', size, inputs=inputs, device=device)
        config_assert(
            len(inputs) > 2, 'MultiplexLayer should have more than 2 inputs.')
Z
zhangjinchao01 已提交
2145
        for i in range(1, len(inputs)):
Q
qijun 已提交
2146 2147 2148 2149 2150
            config_assert(
                self.get_input_layer(i).size == size,
                "All the input layers except the first one should"
                "have the same size as the MultiplexLayer.")

Z
zhangjinchao01 已提交
2151 2152

@config_func
Q
qijun 已提交
2153 2154 2155
def Link(
        name,
        has_subseq=False, ):
Z
zhangjinchao01 已提交
2156 2157 2158 2159 2160
    link_config = LinkConfig()
    link_config.link_name = name
    link_config.has_subseq = has_subseq
    return link_config

Q
qijun 已提交
2161

Z
zhangjinchao01 已提交
2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175
# memory for recurrent layer group.
# *name* and *size* are actual layer's name and size.
# will return name of the memory,
# use this name if you assign the memory as other layer's input
#
# boot frame of memory is zeroed by default,
# or initialize by boot layer output if *boot_layer* set,
# or initialize by trainable bias if *boot_bias* set,
# or initialize by a constant id if *boot_with_const_id* set
#
# Memory can be a sequence if *is_sequence* set, this type of memory
# can only be initailized by a *boot_layer* which is a sequence.
#
@config_func
Q
qijun 已提交
2176 2177 2178 2179 2180 2181 2182 2183
def Memory(
        name,
        size,
        is_sequence=False,
        boot_layer=None,
        boot_bias=False,
        boot_bias_active_type="",
        boot_with_const_id=None, ):
Z
zhangjinchao01 已提交
2184 2185 2186 2187 2188 2189
    agent_name = name + "+delay1"
    if is_sequence:
        agent_layer = SequenceAgentLayer(agent_name, size)
    else:
        agent_layer = AgentLayer(agent_name, size)
    config_assert(g_current_submodel.is_recurrent_layer_group,
Q
qijun 已提交
2190
                  'Memory should be used in recurrent layer group only')
Z
zhangjinchao01 已提交
2191 2192 2193 2194
    memory = g_current_submodel.memories.add()
    memory.layer_name = MakeLayerNameInSubmodel(name)
    memory.link_name = MakeLayerNameInSubmodel(agent_name)
    memory.is_sequence = is_sequence
Q
qijun 已提交
2195
    options = sum((boot_layer is not None, bool(boot_bias),
Z
zhangjinchao01 已提交
2196
                   boot_with_const_id is not None))
Q
qijun 已提交
2197 2198 2199 2200
    config_assert(
        options <= 1,
        'take one option at most from boot_layer, boot_bias, or boot_with_const_id'
    )
Z
zhangjinchao01 已提交
2201 2202 2203
    if boot_layer is not None:
        boot_layer = MakeLayerNameInParentSubmodel(boot_layer)
        config_assert(boot_layer in g_layer_map,
Q
qijun 已提交
2204 2205
                      'boot_layer "%s" does not correspond to a layer name' %
                      boot_layer)
Z
zhangjinchao01 已提交
2206 2207 2208
        memory.boot_layer_name = boot_layer
    elif boot_bias:
        memory.boot_bias_parameter_name = agent_layer.create_bias_parameter(
Q
qijun 已提交
2209
            boot_bias, size, for_self=False)
Z
zhangjinchao01 已提交
2210 2211 2212 2213 2214
        memory.boot_bias_active_type = boot_bias_active_type
    elif boot_with_const_id is not None:
        memory.boot_with_const_id = boot_with_const_id
    return agent_name

Q
qijun 已提交
2215

Z
zhangjinchao01 已提交
2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226
# Generator for recurrent layer group, to use it:
#  1. define a id layer as output of layer group
#  2. define a memory of this id layer, and assign a boot id(begin of sequence)
#  3. define a eos check layer and fill its name in generator's *eos_layer_name*
# Sequence generation will stop when eos check return 1 or *max_num_frames* reached.
# If *beam_size* is greater than one, generator will use beam search.
#   in beam search, if *num_results_per_sample* set, one sample sequence can output
#   multiple results each with a probility.
@config_func
def Generator(
        max_num_frames,
Q
qijun 已提交
2227 2228 2229 2230
        eos_layer_name="eos_check",
        num_results_per_sample=1,
        beam_size=1,
        log_prob=None, ):
Z
zhangjinchao01 已提交
2231 2232 2233 2234 2235 2236 2237 2238 2239
    generator_config = GeneratorConfig()
    generator_config.max_num_frames = max_num_frames
    generator_config.eos_layer_name = eos_layer_name
    generator_config.num_results_per_sample = num_results_per_sample
    generator_config.beam_size = beam_size
    if log_prob is not None:
        generator_config.log_prob = log_prob
    return generator_config

Q
qijun 已提交
2240

Z
zhangjinchao01 已提交
2241 2242
@config_layer('expand')
class ExpandLayer(LayerBase):
Q
qijun 已提交
2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258
    def __init__(self,
                 name,
                 inputs,
                 trans_type='non-seq',
                 device=None,
                 bias=False):
        super(ExpandLayer, self).__init__(
            name, 'expand', 0, inputs=inputs, device=device)
        config_assert(
            len(self.inputs) == 2, 'ExpandLayer takes 2 and only 2 inputs')
        self.config.trans_type = trans_type
        for input_index in xrange(len(self.inputs)):
            input_layer = self.get_input_layer(input_index)
        self.set_layer_size(self.get_input_layer(0).size)
        self.create_bias_parameter(bias, self.config.size)

Z
zhangjinchao01 已提交
2259 2260 2261

@config_layer('featmap_expand')
class FeatMapExpandLayer(LayerBase):
Q
qijun 已提交
2262 2263 2264 2265 2266 2267
    def __init__(self, name, inputs, device=None, num_filters=None, bias=False):
        super(FeatMapExpandLayer, self).__init__(
            name, 'featmap_expand', 0, inputs=inputs, device=device)
        config_assert(
            len(self.inputs) == 1, 'ExpandLayer takes 1 and only 1 inputs')
        if num_filters is not None:
Z
zhangjinchao01 已提交
2268
            self.config.num_filters = num_filters
Q
qijun 已提交
2269
        else:
Z
zhangjinchao01 已提交
2270
            logger.fatal("FeatMapExpandLayer must specify num_filters.")
Q
qijun 已提交
2271
        self.set_layer_size(self.get_input_layer(0).size * num_filters)
Z
zhangjinchao01 已提交
2272 2273 2274 2275


@config_layer('max')
class MaxLayer(LayerBase):
Q
qijun 已提交
2276 2277 2278 2279 2280 2281 2282 2283 2284 2285
    def __init__(self,
                 name,
                 inputs,
                 trans_type='non-seq',
                 active_type='linear',
                 device=None,
                 bias=False,
                 output_max_index=None):
        super(MaxLayer, self).__init__(
            name, 'max', 0, inputs=inputs, device=device)
Z
zhangjinchao01 已提交
2286
        config_assert(len(self.inputs) == 1, 'MaxLayer must have 1 input')
Q
qijun 已提交
2287 2288
        self.config.trans_type = trans_type
        self.config.active_type = active_type
Z
zhangjinchao01 已提交
2289 2290 2291 2292
        for input_index in xrange(len(self.inputs)):
            input_layer = self.get_input_layer(input_index)
            self.set_layer_size(input_layer.size)
        self.create_bias_parameter(bias, self.config.size)
2293 2294
        if output_max_index is not None:
            self.config.output_max_index = output_max_index
Z
zhangjinchao01 已提交
2295 2296 2297 2298


@config_layer('maxid')
class MaxIdLayer(LayerBase):
Q
qijun 已提交
2299
    def __init__(self, name, inputs, beam_size=None, device=None):
Z
zhangjinchao01 已提交
2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316
        super(MaxIdLayer, self).__init__(
            name, 'maxid', 0, inputs=inputs, device=device)
        config_assert(len(self.inputs) == 1, 'MaxIdLayer must have 1 input')
        for input_index in xrange(len(self.inputs)):
            input_layer = self.get_input_layer(input_index)
            self.set_layer_size(input_layer.size)

        if beam_size is None:
            global g_current_submodel
            if g_current_submodel.HasField("generator"):
                self.config.beam_size = g_current_submodel.generator.beam_size
        else:
            self.config.beam_size = beam_size


@config_layer('eos_id')
class EosIdLayer(LayerBase):
Q
qijun 已提交
2317
    def __init__(self, name, inputs, eos_id, device=None):
Z
zhangjinchao01 已提交
2318 2319 2320
        super(EosIdLayer, self).__init__(
            name, 'eos_id', 0, inputs=inputs, device=device)
        config_assert(len(self.inputs) == 1, 'EosIdLayer must have 1 input')
Q
qijun 已提交
2321
        self.set_layer_size(2)  # boolean output
Z
zhangjinchao01 已提交
2322 2323
        self.config.eos_id = eos_id

Q
qijun 已提交
2324

Z
zhangjinchao01 已提交
2325 2326
@config_layer('seqlastins')
class SequenceLastInstanceLayer(LayerBase):
Q
qijun 已提交
2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343
    def __init__(self,
                 name,
                 inputs,
                 active_type='linear',
                 trans_type='non-seq',
                 device=None,
                 bias=False):
        super(SequenceLastInstanceLayer, self).__init__(
            name,
            'seqlastins',
            0,
            inputs=inputs,
            device=device,
            active_type=active_type)
        config_assert(
            len(inputs) == 1, 'SequenceLastInstanceLayer must have 1 input')
        self.config.trans_type = trans_type
Z
zhangjinchao01 已提交
2344 2345 2346 2347 2348
        for input_index in xrange(len(self.inputs)):
            input_layer = self.get_input_layer(input_index)
            self.set_layer_size(input_layer.size)
        self.create_bias_parameter(bias, self.config.size)

Q
qijun 已提交
2349

Z
zhangjinchao01 已提交
2350 2351 2352 2353 2354 2355 2356 2357 2358
@config_layer('seqfirstins')
class SequenceFirstInstanceLayer(SequenceLastInstanceLayer):
    def __init__(
            self,
            name,
            inputs,
            active_type='linear',
            trans_type='non-seq',
            device=None,
Q
qijun 已提交
2359 2360 2361 2362 2363 2364 2365 2366
            bias=False, ):
        super(SequenceFirstInstanceLayer, self).__init__(
            name,
            inputs=inputs,
            active_type=active_type,
            device=device,
            bias=bias)
        self.config.trans_type = trans_type
Z
zhangjinchao01 已提交
2367 2368
        self.config.select_first = True

Q
qijun 已提交
2369

Z
zhangjinchao01 已提交
2370 2371
@config_layer('seqconcat')
class SequenceConcatLayer(LayerBase):
Q
qijun 已提交
2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386
    def __init__(self,
                 name,
                 inputs,
                 active_type='linear',
                 device=None,
                 bias=False):
        super(SequenceConcatLayer, self).__init__(
            name,
            'seqconcat',
            0,
            inputs=inputs,
            device=device,
            active_type=active_type)
        config_assert(
            len(inputs) == 2, 'SequenceConcatLayer must have 2 inputs')
Z
zhangjinchao01 已提交
2387 2388 2389 2390 2391
        for input_index in xrange(len(self.inputs)):
            input_layer = self.get_input_layer(input_index)
            self.set_layer_size(input_layer.size)
        self.create_bias_parameter(bias, self.config.size)

Q
qijun 已提交
2392

Z
zhangjinchao01 已提交
2393 2394
@config_layer('seqreshape')
class SequenceReshapeLayer(LayerBase):
Q
qijun 已提交
2395 2396 2397 2398 2399 2400 2401 2402 2403 2404
    def __init__(self,
                 name,
                 size,
                 inputs,
                 active_type='linear',
                 device=None,
                 bias=False):
        super(SequenceReshapeLayer, self).__init__(
            name,
            'seqreshape',
Z
zhangjinchao01 已提交
2405
            size,
Q
qijun 已提交
2406 2407 2408 2409 2410
            inputs=inputs,
            device=device,
            active_type=active_type)
        config_assert(
            len(inputs) == 1, 'SequenceReshapeLayer must have 1 inputs')
Z
zhangjinchao01 已提交
2411 2412 2413
        self.set_layer_size(size)
        self.create_bias_parameter(bias, size)

Q
qijun 已提交
2414

Z
zhangjinchao01 已提交
2415 2416
@config_layer('subseq')
class SubSequenceLayer(LayerBase):
Q
qijun 已提交
2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429
    def __init__(self,
                 name,
                 inputs,
                 active_type='linear',
                 device=None,
                 bias=False):
        super(SubSequenceLayer, self).__init__(
            name,
            'subseq',
            0,
            inputs=inputs,
            device=device,
            active_type=active_type)
Z
zhangjinchao01 已提交
2430 2431 2432 2433 2434 2435
        config_assert(len(inputs) == 3, 'SubSequenceLayer must have 3 inputs')
        input_layer0 = self.get_input_layer(0)
        size = input_layer0.size
        self.set_layer_size(size)
        self.create_bias_parameter(bias, size)

Q
qijun 已提交
2436

Z
zhangjinchao01 已提交
2437 2438
@config_layer('out_prod')
class OuterProdLayer(LayerBase):
Q
qijun 已提交
2439 2440 2441
    def __init__(self, name, inputs, device=None):
        super(OuterProdLayer, self).__init__(
            name, 'out_prod', 0, inputs=inputs, device=device)
Z
zhangjinchao01 已提交
2442 2443 2444 2445 2446
        config_assert(len(inputs) == 2, 'OuterProdLayer must have 2 inputs')
        input_layer0 = self.get_input_layer(0)
        input_layer1 = self.get_input_layer(1)
        self.set_layer_size(input_layer0.size * input_layer1.size)

Q
qijun 已提交
2447

Z
zhangjinchao01 已提交
2448 2449
@config_layer('power')
class PowerLayer(LayerBase):
Q
qijun 已提交
2450 2451 2452
    def __init__(self, name, inputs, device=None):
        super(PowerLayer, self).__init__(
            name, 'power', 0, inputs=inputs, device=device)
Z
zhangjinchao01 已提交
2453 2454 2455 2456
        config_assert(len(inputs) == 2, 'PowerLayer must have 2 inputs')
        input_layer1 = self.get_input_layer(1)
        self.set_layer_size(input_layer1.size)
        input_layer0 = self.get_input_layer(0)
Q
qijun 已提交
2457 2458 2459
        config_assert(1 == input_layer0.size,
                      'The left input is the exponent and should be of size 1')

Z
zhangjinchao01 已提交
2460 2461 2462

@config_layer('slope_intercept')
class SlopeInterceptLayer(LayerBase):
Q
qijun 已提交
2463 2464 2465
    def __init__(self, name, inputs, slope=1.0, intercept=0.0, device=None):
        super(SlopeInterceptLayer, self).__init__(
            name, 'slope_intercept', 0, inputs=inputs, device=device)
Z
zhangjinchao01 已提交
2466 2467 2468 2469 2470 2471
        self.config.slope = slope
        self.config.intercept = intercept
        config_assert(len(inputs) == 1, 'SlopeInterceptLayer must have 1 input')
        input_layer0 = self.get_input_layer(0)
        self.set_layer_size(input_layer0.size)

Q
qijun 已提交
2472

Z
zhangjinchao01 已提交
2473 2474
@config_layer('scaling')
class ScalingLayer(LayerBase):
Q
qijun 已提交
2475 2476 2477
    def __init__(self, name, inputs, device=None):
        super(ScalingLayer, self).__init__(
            name, 'scaling', 0, inputs=inputs, device=device)
Z
zhangjinchao01 已提交
2478 2479 2480 2481
        config_assert(len(inputs) == 2, 'ScalingLayer must have 2 inputs')
        input_layer1 = self.get_input_layer(1)
        self.set_layer_size(input_layer1.size)
        input_layer0 = self.get_input_layer(0)
Q
qijun 已提交
2482 2483 2484
        config_assert(1 == input_layer0.size,
                      'The left input should be of size 1')

Z
zhangjinchao01 已提交
2485 2486 2487

@config_layer('conv_shift')
class ConvShiftLayer(LayerBase):
Q
qijun 已提交
2488 2489 2490
    def __init__(self, name, inputs, device=None):
        super(ConvShiftLayer, self).__init__(
            name, 'conv_shift', 0, inputs=inputs, device=device)
Z
zhangjinchao01 已提交
2491 2492 2493 2494
        config_assert(len(inputs) == 2, 'ConvShiftLayer must have 2 inputs')
        input_layer0 = self.get_input_layer(0)
        self.set_layer_size(input_layer0.size)

Q
qijun 已提交
2495

Z
zhangjinchao01 已提交
2496 2497
@config_layer('convex_comb')
class ConvexCombinationLayer(LayerBase):
Q
qijun 已提交
2498
    def __init__(self, name, size, inputs, device=None):
Z
zhangjinchao01 已提交
2499
        super(ConvexCombinationLayer, self).__init__(
Q
qijun 已提交
2500 2501 2502
            name, 'convex_comb', size, inputs=inputs, device=device)
        config_assert(
            len(self.inputs) == 2, 'ConvexCombinationLayer must have 2 inputs')
2503 2504 2505
        config_assert(
            size * self.get_input_layer(0).size == self.get_input_layer(1).size,
            'Wrong input size for ConvexCombinationLayer')
Z
zhangjinchao01 已提交
2506 2507
        self.set_layer_size(size)

Q
qijun 已提交
2508

Z
zhangjinchao01 已提交
2509 2510
@config_layer('interpolation')
class InterpolationLayer(LayerBase):
Q
qijun 已提交
2511
    def __init__(self, name, inputs, device=None):
Z
zhangjinchao01 已提交
2512 2513
        super(InterpolationLayer, self).__init__(
            name, 'interpolation', 0, inputs=inputs, device=device)
Q
qijun 已提交
2514 2515
        config_assert(
            len(self.inputs) == 3, 'InterpolationLayer must have 3 inputs')
Z
zhangjinchao01 已提交
2516 2517 2518 2519 2520 2521 2522 2523
        input_layer0 = self.get_input_layer(0)
        input_layer1 = self.get_input_layer(1)
        input_layer2 = self.get_input_layer(2)
        self.set_layer_size(input_layer1.size)
        config_assert(input_layer0.size == 1, 'weight should be of size 1')
        config_assert(input_layer1.size == input_layer2.size,
                      'the two vector inputs should be of the same size')

Q
qijun 已提交
2524

L
liaogang 已提交
2525 2526
@config_layer('bilinear_interp')
class BilinearInterpLayer(LayerBase):
Q
qijun 已提交
2527
    def __init__(self, name, inputs, **xargs):
L
liaogang 已提交
2528
        super(BilinearInterpLayer, self).__init__(
L
liaogang 已提交
2529
            name, 'bilinear_interp', 0, inputs=inputs, **xargs)
L
liaogang 已提交
2530
        input_layer = self.get_input_layer(0)
L
Luo Tao 已提交
2531 2532 2533 2534
        conf = self.config.inputs[0].bilinear_interp_conf
        parse_bilinear(self.inputs[0].bilinear_interp, input_layer.name, conf)
        self.set_cnn_layer(name, conf.out_size_y, conf.out_size_x,
                           conf.image_conf.channels)
Q
qijun 已提交
2535

L
liaogang 已提交
2536

Z
zhangjinchao01 已提交
2537 2538
@config_layer('sum_to_one_norm')
class SumToOneNormLayer(LayerBase):
Q
qijun 已提交
2539
    def __init__(self, name, inputs, device=None):
Z
zhangjinchao01 已提交
2540
        super(SumToOneNormLayer, self).__init__(
Q
qijun 已提交
2541 2542 2543
            name, 'sum_to_one_norm', 0, inputs=inputs, device=device)
        config_assert(
            len(self.inputs) == 1, 'SumToOneNormLayer must have 1 input')
Z
zhangjinchao01 已提交
2544 2545 2546
        input_layer0 = self.get_input_layer(0)
        self.set_layer_size(input_layer0.size)

Q
qijun 已提交
2547

Z
zhangjinchao01 已提交
2548 2549
@config_layer('cos_vm')
class CosSimVecMatLayer(LayerBase):
Q
qijun 已提交
2550
    def __init__(self, name, size, inputs, cos_scale=1.0, device=None):
Z
zhangjinchao01 已提交
2551
        super(CosSimVecMatLayer, self).__init__(
Q
qijun 已提交
2552
            name, 'cos_vm', size, inputs=inputs, device=device)
Z
zhangjinchao01 已提交
2553
        self.config.cos_scale = cos_scale
Q
qijun 已提交
2554 2555
        config_assert(
            len(self.inputs) == 2, 'CosSimVecMatLayer must have 2 inputs')
2556 2557 2558
        config_assert(
            size * self.get_input_layer(0).size == self.get_input_layer(1).size,
            'Wrong input size for CosSimVecMatLayer')
Z
zhangjinchao01 已提交
2559

Q
qijun 已提交
2560

Z
zhangjinchao01 已提交
2561 2562
@config_layer('sampling_id')
class SamplingIdLayer(LayerBase):
Q
qijun 已提交
2563
    def __init__(self, name, inputs, device=None):
Z
zhangjinchao01 已提交
2564 2565
        super(SamplingIdLayer, self).__init__(
            name, 'sampling_id', 0, inputs=inputs, device=device)
Q
qijun 已提交
2566 2567
        config_assert(
            len(self.inputs) == 1, 'SamplingIdLayer must have 1 input')
Z
zhangjinchao01 已提交
2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579
        for input_index in xrange(len(self.inputs)):
            input_layer = self.get_input_layer(input_index)
            self.set_layer_size(input_layer.size)


# AverageLayer: "average" for each sample within a sequence.
# average_stratrgy: set to one of the following:
# 'average': plain average.
# 'sum': sum each sample instead of average (which is divide by sample_num).
# 'squarerootn': sum each sample, but divide by sqrt(sample_num).
@config_layer('average')
class AverageLayer(LayerBase):
Q
qijun 已提交
2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594
    def __init__(self,
                 name,
                 inputs,
                 average_strategy='average',
                 trans_type='non-seq',
                 active_type='linear',
                 device=None,
                 bias=False):
        super(AverageLayer, self).__init__(
            name,
            'average',
            0,
            inputs=inputs,
            device=device,
            active_type=active_type)
Z
zhangjinchao01 已提交
2595
        self.config.average_strategy = average_strategy
Q
qijun 已提交
2596
        self.config.trans_type = trans_type
Z
zhangjinchao01 已提交
2597 2598 2599 2600 2601 2602
        config_assert(len(inputs) == 1, 'AverageLayer must have 1 input')
        for input_index in xrange(len(self.inputs)):
            input_layer = self.get_input_layer(input_index)
            self.set_layer_size(input_layer.size)
        self.create_bias_parameter(bias, self.config.size)

Q
qijun 已提交
2603

Z
zhangjinchao01 已提交
2604 2605
@config_layer('cos')
class CosSimLayer(LayerBase):
Q
qijun 已提交
2606
    def __init__(self, name, inputs, cos_scale=5, device=None):
Z
zhangjinchao01 已提交
2607 2608 2609 2610 2611 2612
        super(CosSimLayer, self).__init__(
            name, 'cos', 1, inputs=inputs, device=device)
        config_assert(len(self.inputs) == 2, 'CosSimLayer must have 2 inputs')
        config_assert(
            self.get_input_layer(0).size == self.get_input_layer(1).size,
            'inputs of CosSimLayer must have same dim')
2613
        self.config.cos_scale = cos_scale
Z
zhangjinchao01 已提交
2614 2615 2616 2617


@config_layer('tensor')
class TensorLayer(LayerBase):
Q
qijun 已提交
2618 2619 2620
    def __init__(self, name, size, inputs, device=None, bias=True, **xargs):
        super(TensorLayer, self).__init__(
            name, 'tensor', size, inputs=inputs, device=device, **xargs)
Z
zhangjinchao01 已提交
2621 2622
        config_assert(len(self.inputs) == 2, 'TensorLayer must have 2 inputs')
        config_assert(size > 0, 'size must be positive')
Q
qijun 已提交
2623 2624
        config_assert(inputs[1].parameter_name == None,
                      'second parameter should be None.')
Z
zhangjinchao01 已提交
2625 2626 2627 2628 2629 2630 2631 2632 2633 2634
        input_layer0 = self.get_input_layer(0)
        input_layer1 = self.get_input_layer(1)
        psize = size * input_layer0.size * input_layer1.size
        dims = [input_layer0.size, input_layer1.size, size]
        self.create_input_parameter(0, psize, dims)
        self.create_bias_parameter(bias, size)


@config_layer('mixed')
class MixedLayer(LayerBase):
Q
qijun 已提交
2635 2636 2637 2638 2639 2640 2641
    def __init__(self,
                 name,
                 inputs,
                 size=0,
                 bias=True,
                 error_clipping_threshold=None,
                 **xargs):
Z
zhangjinchao01 已提交
2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658
        config_assert(inputs, 'inputs cannot be empty')
        super(MixedLayer, self).__init__(
            name, 'mixed', size, inputs=inputs, **xargs)
        operator_input_index = []
        for operator in self.operators:
            operator_conf = operator.operator_conf
            for i in xrange(1, len(operator.input_layer_names)):
                input_index = len(self.config.inputs)
                operator_conf.input_indices.append(input_index)
                input_config = Input(operator.input_layer_names[i])
                self.inputs.append(input_config)
                layer_input = self.config.inputs.add()
                layer_input.input_layer_name = input_config.input_layer_name
            for input_index in operator_conf.input_indices:
                input_layer = self.get_input_layer(input_index)
                operator_conf.input_sizes.append(input_layer.size)
                operator_input_index.append(input_index)
2659
            if self.config.size == 0:
Z
zhangjinchao01 已提交
2660 2661 2662
                size = operator.calc_output_size(operator_conf.input_sizes)
                if size != 0:
                    self.set_layer_size(size)
2663
            else:
2664 2665
                sz = operator.calc_output_size(operator_conf.input_sizes)
                if sz != 0:
Q
qijun 已提交
2666 2667 2668 2669
                    config_assert(
                        sz == self.config.size,
                        "different inputs have different size: %s vs. %s" %
                        (sz, self.config.size))
Z
zhangjinchao01 已提交
2670 2671 2672 2673
        for input_index in xrange(len(self.inputs)):
            input_layer = self.get_input_layer(input_index)
            input = self.inputs[input_index]
            if input_index not in operator_input_index:
Q
qijun 已提交
2674 2675 2676
                config_assert(
                    isinstance(input, Projection),
                    "input should be projection or operation")
2677
            if self.config.size == 0 and isinstance(input, Projection):
Z
zhangjinchao01 已提交
2678 2679 2680
                size = input.calc_output_size(input_layer)
                if size != 0:
                    self.set_layer_size(size)
2681
            elif isinstance(input, Projection):
Q
qijun 已提交
2682 2683 2684 2685 2686 2687
                sz = input.calc_output_size(input_layer)
                if sz != 0:
                    config_assert(
                        sz == self.config.size,
                        "different inputs have different size: %s vs. %s" %
                        (sz, self.config.size))
Z
zhangjinchao01 已提交
2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698
        config_assert(size != 0, "size is not set")

        for input_index in xrange(len(self.inputs)):
            input = self.inputs[input_index]
            if isinstance(input, Projection):
                input_layer = self.get_input_layer(input_index)
                input.proj_conf.input_size = input_layer.size
                input.proj_conf.output_size = size

                input_config = self.config.inputs[input_index]
                input_config.proj_conf.CopyFrom(input.proj_conf)
Q
qijun 已提交
2699 2700
                input_config.proj_conf.name = gen_parameter_name(name,
                                                                 input_index)
Z
zhangjinchao01 已提交
2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711
                psize = input.calc_parameter_size(input_layer.size, size)
                dims = input.calc_parameter_dims(input_layer.size, size)
                self.create_input_parameter(input_index, psize, dims)

        for operator in self.operators:
            operator_conf = operator.operator_conf
            operator_conf.output_size = self.config.size
            operator.check_dims()
            record_operator_conf = self.config.operator_confs.add()
            record_operator_conf.CopyFrom(operator_conf)

2712 2713 2714 2715 2716 2717
        psize = self.config.size
        if isinstance(self.inputs[0], ConvProjection):
            self.config.shared_biases = True
            psize = 0
            for input in self.inputs:
                psize += input.calc_bias_size()
Z
zhangjinchao01 已提交
2718

2719 2720 2721
        if bias:
            self.config.bias_size = psize
            self.create_bias_parameter(bias, psize)
Z
zhangjinchao01 已提交
2722

2723 2724
        if error_clipping_threshold is not None:
            self.config.error_clipping_threshold = error_clipping_threshold
Z
zhangjinchao01 已提交
2725

Q
qijun 已提交
2726

Z
zhangjinchao01 已提交
2727 2728
# like MixedLayer, but no bias parameter
@config_func
Q
qijun 已提交
2729
def ExpressionLayer(name, inputs, **xargs):
Z
zhangjinchao01 已提交
2730 2731
    MixedLayer(name, inputs, bias=False, **xargs)

Q
qijun 已提交
2732

Z
zhangjinchao01 已提交
2733 2734
@config_layer('concat')
class ConcatenateLayer(LayerBase):
Q
qijun 已提交
2735
    def __init__(self, name, inputs, bias=False, **xargs):
Z
zhangjinchao01 已提交
2736
        config_assert(inputs, 'inputs cannot be empty')
2737
        config_assert(not bias, 'ConcatenateLayer cannot support bias.')
Z
zhangjinchao01 已提交
2738 2739 2740 2741 2742 2743
        super(ConcatenateLayer, self).__init__(
            name, 'concat', 0, inputs=inputs, **xargs)
        size = 0
        for input_index in xrange(len(self.inputs)):
            input_layer = self.get_input_layer(input_index)
            input = self.inputs[input_index]
Q
qijun 已提交
2744
            if self.config.size == 0:
Z
zhangjinchao01 已提交
2745 2746 2747 2748
                size += input_layer.size

        self.set_layer_size(size)

Q
qijun 已提交
2749

Z
zhangjinchao01 已提交
2750 2751 2752
# like concat layer, but each input layer was processed by a Projection.
@config_layer('concat2')
class ConcatenateLayer2(LayerBase):
Q
qijun 已提交
2753
    def __init__(self, name, inputs, bias=False, **xargs):
Z
zhangjinchao01 已提交
2754 2755 2756
        config_assert(inputs, 'inputs cannot be empty')
        super(ConcatenateLayer2, self).__init__(
            name, 'concat2', 0, inputs=inputs, **xargs)
2757 2758

        if isinstance(self.inputs[0], ConvProjection):
Q
qijun 已提交
2759 2760 2761 2762 2763 2764
            for input_index in xrange(len(self.inputs) - 1):
                input = self.inputs[input_index + 1]
                config_assert(
                    isinstance(input, ConvProjection),
                    "The first input of ConcatenateLayer2 is ConvProjection, "
                    "the other inputs should also be ConvProjection.")
2765

Z
zhangjinchao01 已提交
2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785
        size = 0
        for input_index in xrange(len(self.inputs)):
            input_layer = self.get_input_layer(input_index)
            input = self.inputs[input_index]
            output_size = input.calc_output_size(input_layer)
            config_assert(output_size != 0, "proj output size is not set")
            size += output_size

        self.set_layer_size(size)

        for input_index in xrange(len(self.inputs)):
            input_layer = self.get_input_layer(input_index)
            input = self.inputs[input_index]
            input.proj_conf.input_size = input_layer.size
            input.proj_conf.output_size = input.calc_output_size(input_layer)

            input_config = self.config.inputs[input_index]
            input_config.proj_conf.CopyFrom(input.proj_conf)
            input_config.proj_conf.name = gen_parameter_name(name, input_index)
            psize = input.calc_parameter_size(input.proj_conf.input_size,
Q
qijun 已提交
2786
                                              input.proj_conf.output_size)
Z
zhangjinchao01 已提交
2787
            dims = input.calc_parameter_dims(input.proj_conf.input_size,
Q
qijun 已提交
2788
                                             input.proj_conf.output_size)
Z
zhangjinchao01 已提交
2789 2790
            self.create_input_parameter(input_index, psize, dims)

2791 2792 2793 2794 2795 2796 2797
        psize = self.config.size
        if isinstance(self.inputs[0], ConvProjection):
            self.config.shared_biases = True
            psize = 0
            for input in self.inputs:
                psize += input.calc_bias_size()

2798 2799 2800
        if bias:
            self.config.bias_size = psize
            self.create_bias_parameter(bias, psize)
2801

Q
qijun 已提交
2802

Z
zhangjinchao01 已提交
2803 2804
@config_layer('recurrent')
class RecurrentLayer(LayerBase):
Q
qijun 已提交
2805
    def __init__(self, name, inputs, reversed=False, bias=True, **xargs):
Y
Yu Yang 已提交
2806 2807
        super(RecurrentLayer, self).__init__(name, 'recurrent', 0, inputs,
                                             **xargs)
Z
zhangjinchao01 已提交
2808 2809 2810 2811 2812 2813 2814 2815 2816
        config_assert(len(self.inputs) == 1, 'RecurrentLayer must have 1 input')
        input_layer = self.get_input_layer(0)
        size = input_layer.size
        self.set_layer_size(size)
        self.config.reversed = reversed
        dims = [size, size]
        self.create_input_parameter(0, size * size, dims)
        self.create_bias_parameter(bias, self.config.size)

Q
qijun 已提交
2817

Z
zhangjinchao01 已提交
2818 2819
@config_layer('lstmemory')
class LstmLayer(LayerBase):
Q
qijun 已提交
2820 2821 2822 2823 2824 2825 2826 2827
    def __init__(self,
                 name,
                 inputs,
                 reversed=False,
                 active_gate_type="sigmoid",
                 active_state_type="sigmoid",
                 bias=True,
                 **xargs):
Z
zhangjinchao01 已提交
2828 2829 2830 2831 2832 2833 2834 2835
        super(LstmLayer, self).__init__(name, 'lstmemory', 0, inputs, **xargs)
        config_assert(len(self.inputs) == 1, 'LstmLayer must have 1 input')
        input_layer = self.get_input_layer(0)
        #check input_layer.size is divided by 4
        config_assert(input_layer.size % 4 == 0, "size % 4 should be 0!")
        size = input_layer.size / 4
        self.set_layer_size(size)
        self.config.reversed = reversed
Q
qijun 已提交
2836
        self.config.active_gate_type = active_gate_type
Z
zhangjinchao01 已提交
2837 2838 2839 2840 2841
        self.config.active_state_type = active_state_type
        self.create_input_parameter(0, size * size * 4, [size, size, 4])
        #bias includes 3 kinds of peephole, 4 + 3 = 7
        self.create_bias_parameter(bias, size * 7)

Q
qijun 已提交
2842

Z
zhangjinchao01 已提交
2843 2844
@config_layer('lstm_step')
class LstmStepLayer(LayerBase):
Q
qijun 已提交
2845 2846 2847 2848 2849 2850 2851 2852 2853 2854
    def __init__(self,
                 name,
                 size,
                 inputs,
                 active_gate_type="sigmoid",
                 active_state_type="sigmoid",
                 bias=True,
                 **xargs):
        super(LstmStepLayer, self).__init__(name, 'lstm_step', size, inputs,
                                            **xargs)
Z
zhangjinchao01 已提交
2855 2856 2857
        config_assert(len(inputs) == 2, 'LstmStepLayer must have 2 inputs')
        input_layer0 = self.get_input_layer(0)
        input_layer1 = self.get_input_layer(1)
Q
qijun 已提交
2858 2859 2860 2861 2862
        config_assert(input_layer0.size == 4 * size,
                      'input_layer0.size != 4 * layer.size')
        config_assert(input_layer1.size == size,
                      'input_layer1.size != layer.size')
        self.config.active_gate_type = active_gate_type
Z
zhangjinchao01 已提交
2863 2864 2865
        self.config.active_state_type = active_state_type
        self.create_bias_parameter(bias, size * 3)

Q
qijun 已提交
2866

Z
zhangjinchao01 已提交
2867 2868 2869
# get the specific output from the input layer.
@config_layer('get_output')
class GetOutputLayer(LayerBase):
Q
qijun 已提交
2870 2871 2872 2873
    def __init__(self, name, size, inputs):
        super(GetOutputLayer, self).__init__(name, 'get_output', size, inputs)
        config_assert(
            len(self.inputs) == 1, 'GetOutputLayer must have 1 inputs')
Z
zhangjinchao01 已提交
2874 2875 2876 2877
        inputs = self.inputs[0]
        config_assert(inputs.input_layer_argument,
                      'input_layer_argument cannot be empty')

Q
qijun 已提交
2878

Z
zhangjinchao01 已提交
2879 2880
@config_layer('mdlstmemory')
class MDLstmLayer(LayerBase):
Q
qijun 已提交
2881 2882 2883 2884 2885 2886 2887 2888
    def __init__(self,
                 name,
                 inputs,
                 directions=True,
                 active_gate_type="sigmoid",
                 active_state_type="sigmoid",
                 bias=True,
                 **xargs):
Y
Yu Yang 已提交
2889 2890
        super(MDLstmLayer, self).__init__(name, 'mdlstmemory', 0, inputs,
                                          **xargs)
Z
zhangjinchao01 已提交
2891 2892 2893 2894
        config_assert(len(self.inputs) == 1, 'MDLstmLayer must have 1 input')
        input_layer = self.get_input_layer(0)
        dim_num = len(directions)
        #check input_layer.size is divided by (3+dim_num)
Y
Yu Yang 已提交
2895 2896
        config_assert(input_layer.size % (3 + dim_num) == 0,
                      "size % (dim_num) should be 0!")
Q
qijun 已提交
2897
        size = input_layer.size / (3 + dim_num)
Z
zhangjinchao01 已提交
2898
        self.set_layer_size(size)
Q
qijun 已提交
2899
        self.config.active_gate_type = active_gate_type
Z
zhangjinchao01 已提交
2900 2901 2902
        self.config.active_state_type = active_state_type
        for i in xrange(len(directions)):
            self.config.directions.append(int(directions[i]))
Y
Yu Yang 已提交
2903 2904
        self.create_input_parameter(0, size * size * (3 + dim_num),
                                    [size, size, 3 + dim_num])
Z
zhangjinchao01 已提交
2905
        #bias includes 3 kinds of peephole, 3+dim_num+2+dim_num
Q
qijun 已提交
2906 2907
        self.create_bias_parameter(bias, size * (5 + 2 * dim_num))

Z
zhangjinchao01 已提交
2908 2909 2910

@config_layer('gated_recurrent')
class GatedRecurrentLayer(LayerBase):
Q
qijun 已提交
2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921
    def __init__(self,
                 name,
                 inputs,
                 reversed=False,
                 active_gate_type="sigmoid",
                 bias=True,
                 **xargs):
        super(GatedRecurrentLayer, self).__init__(name, 'gated_recurrent', 0,
                                                  inputs, **xargs)
        config_assert(
            len(self.inputs) == 1, 'GatedRecurrentLayer must have 1 input')
Z
zhangjinchao01 已提交
2922 2923 2924 2925 2926 2927
        input_layer = self.get_input_layer(0)
        #check input_layer.size is divided by 3
        config_assert(input_layer.size % 3 == 0, "size % 3 should be 0!")
        size = input_layer.size / 3
        self.set_layer_size(size)
        self.config.reversed = reversed
Q
qijun 已提交
2928
        self.config.active_gate_type = active_gate_type
Z
zhangjinchao01 已提交
2929 2930 2931
        self.create_input_parameter(0, size * size * 3, [size, size * 3])
        self.create_bias_parameter(bias, size * 3)

Q
qijun 已提交
2932

Z
zhangjinchao01 已提交
2933 2934
@config_layer('gru_step')
class GruStepLayer(LayerBase):
Q
qijun 已提交
2935 2936 2937 2938 2939 2940 2941
    def __init__(self,
                 name,
                 size,
                 inputs,
                 active_gate_type="sigmoid",
                 bias=True,
                 **xargs):
Y
Yu Yang 已提交
2942 2943
        super(GruStepLayer, self).__init__(name, 'gru_step', size, inputs,
                                           **xargs)
Z
zhangjinchao01 已提交
2944 2945 2946
        config_assert(len(self.inputs) == 2, 'GruStepLayer must have 2 input')
        input_layer0 = self.get_input_layer(0)
        input_layer1 = self.get_input_layer(1)
Q
qijun 已提交
2947 2948 2949 2950 2951
        config_assert(input_layer0.size == 3 * size,
                      'input_layer0.size != 3 * layer.size')
        config_assert(input_layer1.size == size,
                      'input_layer1.size != layer.size')
        self.config.active_gate_type = active_gate_type
Z
zhangjinchao01 已提交
2952 2953 2954
        self.create_input_parameter(0, size * size * 3, [size, size * 3])
        self.create_bias_parameter(bias, size * 3)

Q
qijun 已提交
2955

Z
zhangjinchao01 已提交
2956 2957 2958 2959 2960 2961 2962
'''
 A layer for calculating the cost of sequential conditional random field model.
 Example: CRFLayer(name="crf_cost", size=label_num,
                   inputs=["output", "label", "weight"])
          where "weight" is optional, one weight for each sequence
 @param coeff: weight of the layer
'''
Q
qijun 已提交
2963 2964


Z
zhangjinchao01 已提交
2965 2966
@config_layer('crf')
class CRFLayer(LayerBase):
Q
qijun 已提交
2967
    def __init__(self, name, size, inputs, coeff=1.0, device=None):
Z
zhangjinchao01 已提交
2968
        super(CRFLayer, self).__init__(name, 'crf', size, inputs, device=device)
Q
qijun 已提交
2969 2970
        config_assert(2 <= len(self.inputs) <= 3,
                      'CRFLayer must have 2 or 3 inputs')
Z
zhangjinchao01 已提交
2971 2972 2973
        self.create_input_parameter(0, size * (size + 2), [size, size + 2])
        self.config.coeff = coeff

Q
qijun 已提交
2974

Z
zhangjinchao01 已提交
2975 2976 2977 2978 2979 2980 2981 2982
'''
 A layer for calculating the decoding sequence of sequential conditional
 random field model.
 The decoding sequence is stored in output_.ids
 If a second input is provided, it is treated as the ground-truth label, and
 this layer will also calculate error, output_.value[i] is 1 for incorrect
 decoding or 0 for correct decoding
'''
Q
qijun 已提交
2983 2984


Z
zhangjinchao01 已提交
2985 2986
@config_layer('crf_decoding')
class CRFDecodingLayer(LayerBase):
Q
qijun 已提交
2987
    def __init__(self, name, size, inputs, device=None):
Z
zhangjinchao01 已提交
2988 2989 2990 2991 2992 2993 2994
        super(CRFDecodingLayer, self).__init__(
            name, 'crf_decoding', size, inputs, device=device)
        config_assert(
            len(self.inputs) <= 2,
            'CRFDecodingLayer cannot have more than 2 inputs')
        self.create_input_parameter(0, size * (size + 2), [size, size + 2])

Q
qijun 已提交
2995

Z
zhangjinchao01 已提交
2996 2997
@config_layer('ctc')
class CTCLayer(LayerBase):
Q
qijun 已提交
2998
    def __init__(self, name, size, inputs, norm_by_times=False, device=None):
Z
zhangjinchao01 已提交
2999 3000 3001 3002
        super(CTCLayer, self).__init__(name, 'ctc', size, inputs, device=device)
        self.config.norm_by_times = norm_by_times
        config_assert(len(self.inputs) == 2, 'CTCLayer must have 2 inputs')

Q
qijun 已提交
3003

3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024
@config_layer('warp_ctc')
class WarpCTCLayer(LayerBase):
    def __init__(self,
                 name,
                 size,
                 inputs,
                 blank=0,
                 norm_by_times=False,
                 device=None):
        super(WarpCTCLayer, self).__init__(
            name, 'warp_ctc', size=size, inputs=inputs, device=device)
        self.config.blank = blank
        self.config.norm_by_times = norm_by_times
        config_assert(len(self.inputs) == 2, 'WarpCTCLayer must have 2 inputs')
        input_layer = self.get_input_layer(0)
        config_assert(
            (input_layer.active_type == '' or
             input_layer.active_type == 'linear'),
            "Expecting the active_type of input layer to be linear or null")


Z
zhangjinchao01 已提交
3025 3026
@config_layer('recurrent_layer_group')
class RecurrentLayerGroup(LayerBase):
Q
qijun 已提交
3027
    def __init__(self, name, device=None):
L
Luo Tao 已提交
3028 3029
        global g_pass_height_width
        g_pass_height_width = False
Z
zhangjinchao01 已提交
3030 3031 3032 3033 3034 3035
        super(RecurrentLayerGroup, self).__init__(
            name, 'recurrent_layer_group', 0, inputs=[], device=device)


# Deprecated, use a new layer specific class instead
@config_func
Q
qijun 已提交
3036
def Layer(name, type, **xargs):
Z
zhangjinchao01 已提交
3037 3038 3039 3040
    layers = {}
    layers.update(g_cost_map)
    layers.update(g_layer_type_map)
    layer_func = layers.get(type)
Q
qijun 已提交
3041
    config_assert(layer_func, "layer type '%s' not supported." % type)
X
xuwei06 已提交
3042
    return layer_func(name, **xargs)
Z
zhangjinchao01 已提交
3043

Q
qijun 已提交
3044

Z
zhangjinchao01 已提交
3045
@config_func
Q
qijun 已提交
3046
def ParameterHook(type, **kwargs):
Z
zhangjinchao01 已提交
3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058
    if type == 'pruning':
        mask_filename = kwargs.get('mask_filename', None)
        assert mask_filename is not None
        hook = ParameterUpdaterHookConfig()
        hook.type = type
        hook.purning_mask_filename = mask_filename
        return hook
    else:
        return None


@config_func
Q
qijun 已提交
3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080
def Parameter(name,
              size,
              device,
              dims,
              learning_rate=None,
              momentum=None,
              decay_rate=None,
              decay_rate_l1=None,
              initial_mean=None,
              initial_std=None,
              initial_strategy=None,
              initial_smart=None,
              num_batches_regularization=None,
              sparse_remote_update=None,
              sparse_update=None,
              gradient_clipping_threshold=None,
              sparse=None,
              format=None,
              need_compact=None,
              is_static=None,
              is_shared=None,
              update_hooks=None):
Z
zhangjinchao01 已提交
3081 3082 3083 3084 3085 3086 3087

    config_assert(name not in g_parameter_map,
                  'Duplicated parameter name: ' + name)

    para = g_config.model_config.parameters.add()
    para.name = name
    para.size = size
3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098
    if device is not None:
        para.device = int(device)
    para.dims.extend(dims)

    if learning_rate is not None:
        para.learning_rate = float(learning_rate)

    momentum = default(momentum, g_default_momentum)
    if momentum is not None:
        para.momentum = float(momentum)

Z
zhangjinchao01 已提交
3099 3100
    config_assert(not momentum or not decay_rate_l1,
                  "momentum and decay_rate_l1 cannot both be non-zero")
3101 3102 3103 3104 3105

    decay_rate = default(decay_rate, g_default_decay_rate)
    if decay_rate is not None:
        para.decay_rate = decay_rate

Z
zhangjinchao01 已提交
3106 3107 3108 3109
    if decay_rate_l1 is not None:
        para.decay_rate_l1 = decay_rate_l1
    para.initial_std = default(initial_std, g_default_initial_std)
    para.initial_mean = default(initial_mean, g_default_initial_mean)
3110

Q
qijun 已提交
3111 3112
    num_batches_regularization = default(num_batches_regularization,
                                         g_default_num_batches_regularization)
3113 3114 3115
    if num_batches_regularization is not None:
        para.num_batches_regularization = int(num_batches_regularization)

Z
zhangjinchao01 已提交
3116 3117 3118 3119 3120 3121
    if sparse_remote_update is not None:
        para.sparse_remote_update = sparse_remote_update
        if sparse_remote_update:
            g_config.opt_config.use_sparse_remote_updater = True
    if sparse_update is not None:
        para.sparse_update = sparse_update
Q
qijun 已提交
3122 3123
    gradient_clipping_threshold = default(gradient_clipping_threshold,
                                          g_default_gradient_clipping_threshold)
3124 3125
    if gradient_clipping_threshold is not None:
        para.gradient_clipping_threshold = gradient_clipping_threshold
Q
qijun 已提交
3126 3127
    para.initial_strategy = default(initial_strategy,
                                    g_default_initial_strategy)
Z
zhangjinchao01 已提交
3128 3129 3130 3131 3132 3133
    para.initial_smart = default(initial_smart, g_default_initial_smart)
    if para.initial_smart:
        para.initial_mean = 0.
        if len(para.dims) != 0:
            para.initial_std = 1. / math.sqrt(para.dims[0])
        else:
Q
qijun 已提交
3134 3135 3136
            print(
                "Use initial_smart, but dims not set. Initial_smart may not be used in this layer"
            )
Z
zhangjinchao01 已提交
3137 3138 3139 3140
            traceback.print_exc()
            para.initial_std = 1. / math.sqrt(para.size)
    if g_default_compact_func is not None:
        sparse, format, need_compact = g_default_compact_func(para.name)
3141 3142 3143 3144 3145 3146 3147

    if sparse is not None:
        para.is_sparse = sparse
    if format is not None:
        para.format = format
    if need_compact is not None:
        para.need_compact = need_compact
Z
zhangjinchao01 已提交
3148 3149 3150 3151
    if is_static is not None:
        para.is_static = is_static
    config_assert(not para.sparse_remote_update or not para.is_static,
                  "sparse_remote_update and is_static cannot both be true")
3152 3153
    if is_shared is not None:
        para.is_shared = is_shared
Z
zhangjinchao01 已提交
3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174

    update_hooks = default(update_hooks, g_default_update_hooks)

    if update_hooks is not None:
        if hasattr(update_hooks, '__call__'):
            update_hooks = update_hooks(para.name)

        if isinstance(update_hooks, list):
            for hook in update_hooks:
                para.update_hooks.extend([hook])
        else:
            para.update_hooks.extend(update_hooks)

    g_parameter_map[name] = para


@config_func
def default_initial_std(val):
    global g_default_initial_std
    g_default_initial_std = val

Q
qijun 已提交
3175

Z
zhangjinchao01 已提交
3176 3177 3178 3179 3180
@config_func
def default_initial_mean(val):
    global g_default_initial_mean
    g_default_initial_mean = val

Q
qijun 已提交
3181

Z
zhangjinchao01 已提交
3182 3183 3184 3185 3186
@config_func
def default_initial_strategy(val):
    global g_default_initial_strategy
    g_default_initial_strategy = val

Q
qijun 已提交
3187

Z
zhangjinchao01 已提交
3188 3189 3190 3191 3192
@config_func
def default_initial_smart(val):
    global g_default_initial_smart
    g_default_initial_smart = val

Q
qijun 已提交
3193

Z
zhangjinchao01 已提交
3194 3195 3196 3197 3198
@config_func
def default_momentum(val):
    global g_default_momentum
    g_default_momentum = val

Q
qijun 已提交
3199

Z
zhangjinchao01 已提交
3200 3201 3202 3203 3204
@config_func
def default_decay_rate(val):
    global g_default_decay_rate
    g_default_decay_rate = val

Q
qijun 已提交
3205

Z
zhangjinchao01 已提交
3206 3207 3208 3209 3210
@config_func
def default_num_batches_regularization(val):
    global g_default_num_batches_regularization
    g_default_num_batches_regularization = val

Q
qijun 已提交
3211

Z
zhangjinchao01 已提交
3212 3213 3214 3215 3216
@config_func
def default_gradient_clipping_threshold(val):
    global g_default_gradient_clipping_threshold
    g_default_gradient_clipping_threshold = val

Q
qijun 已提交
3217

Z
zhangjinchao01 已提交
3218 3219 3220 3221 3222
@config_func
def default_device(val):
    global g_default_device
    g_default_device = val

Q
qijun 已提交
3223

Z
zhangjinchao01 已提交
3224 3225 3226 3227 3228
@config_func
def default_update_hooks(val):
    global g_default_update_hooks
    g_default_update_hooks = val

Q
qijun 已提交
3229

Z
zhangjinchao01 已提交
3230 3231 3232 3233 3234
@config_func
def default_compact_func(val):
    global g_default_compact_func
    g_default_compact_func = val

Q
qijun 已提交
3235

Z
zhangjinchao01 已提交
3236 3237 3238 3239 3240
def make_importer(config_dir, config_args):
    def Import(config_file, local_args={}):
        if not config_file.startswith('/'):
            config_file = config_dir + '/' + config_file
            g_config.config_files.append(config_file)
Q
qijun 已提交
3241 3242 3243
        execfile(config_file,
                 make_config_environment(config_file, config_args), local_args)

Z
zhangjinchao01 已提交
3244 3245
    return Import

Q
qijun 已提交
3246

Z
zhangjinchao01 已提交
3247 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263 3264 3265 3266 3267 3268 3269 3270 3271 3272 3273 3274
settings = dict(
    batch_size=None,
    mini_batch_size=None,
    algorithm='async_sgd',
    async_lagged_grad_discard_ratio=1.5,
    learning_method='momentum',
    num_batches_per_send_parameter=None,
    num_batches_per_get_parameter=None,
    center_parameter_update_method=None,
    learning_rate=1.,
    learning_rate_decay_a=0.,
    learning_rate_decay_b=0.,
    learning_rate_schedule='poly',
    learning_rate_args='',
    l1weight=0.1,
    l2weight=0.,
    l2weight_zero_iter=0,
    c1=0.0001,
    backoff=0.5,
    owlqn_steps=10,
    max_backoff=5,
    average_window=0,
    do_average_in_cpu=False,
    max_average_window=None,
    ada_epsilon=1e-6,
    ada_rou=0.95,
    delta_add_rate=1.0,
    shrink_parameter_value=0,
Q
qijun 已提交
3275 3276 3277
    adam_beta1=0.9,
    adam_beta2=0.999,
    adam_epsilon=1e-8, )
Z
zhangjinchao01 已提交
3278

Q
qijun 已提交
3279
settings_deprecated = dict(usage_ratio=1., )
Z
zhangjinchao01 已提交
3280 3281 3282 3283

trainer_settings = dict(
    save_dir="./output/model",
    init_model_path=None,
Q
qijun 已提交
3284 3285
    start_pass=0, )

Z
zhangjinchao01 已提交
3286 3287 3288 3289 3290

@config_func
def Settings(**args):
    for k, v in args.iteritems():
        if k == "usage_ratio":
Q
qijun 已提交
3291 3292
            logger.warning(
                "Deprecated: define usage_ratio in DataConfig instead")
Z
zhangjinchao01 已提交
3293 3294 3295 3296 3297 3298 3299 3300 3301 3302 3303
            if g_config.HasField("data_config"):
                g_config.data_config.__setattr__(k, v)
            settings_deprecated[k] = v
            continue
        elif k in settings:
            settings[k] = v
        elif k in trainer_settings:
            trainer_settings[k] = v
        else:
            logger.fatal('Unkown setting: %s' % k)

Q
qijun 已提交
3304

Z
zhangjinchao01 已提交
3305 3306 3307 3308
@config_func
def cluster_config(**args):
    pass

Q
qijun 已提交
3309

Z
zhangjinchao01 已提交
3310 3311 3312 3313 3314 3315 3316 3317 3318
@config_func
def EnableSubmodelSuffix(flag=True):
    """
    If enabled, the layer and evaluator names in submodel will be automatically
    appended with @submodel_name
    """
    global g_add_submodel_suffix
    g_add_submodel_suffix = flag

Q
qijun 已提交
3319

Z
zhangjinchao01 已提交
3320 3321 3322 3323
def make_config_environment(config_file, config_args):
    def make_setter(k):
        def setter(v):
            logger.fatal("Obsolete: use Settings(%s=%s, ...) instead" % (k, v))
Q
qijun 已提交
3324

Z
zhangjinchao01 已提交
3325 3326 3327 3328 3329 3330 3331 3332 3333 3334 3335 3336 3337 3338 3339
        return setter

    funcs = {}
    funcs.update(g_config_funcs)

    for k in settings.iterkeys():
        funcs[k] = make_setter(k)
    for k in settings_deprecated.iterkeys():
        funcs[k] = make_setter(k)
    config_dir = os.path.dirname(config_file)
    if not config_dir:
        config_dir = '.'

    funcs.update(
        Import=make_importer(config_dir, config_args),
Q
qijun 已提交
3340
        get_config_arg=make_get_config_arg(config_args), )
Z
zhangjinchao01 已提交
3341 3342 3343 3344 3345

    funcs.update(g_extended_config_funcs)

    return funcs

Q
qijun 已提交
3346

Z
zhangjinchao01 已提交
3347 3348 3349 3350 3351 3352 3353 3354 3355 3356 3357 3358 3359 3360 3361 3362
def make_get_config_arg(config_args):
    def get_config_arg(name, type, default=None):
        if type == bool:
            s = config_args.get(name)
            if not s:
                return default
            if s == 'True' or s == '1' or s == 'true':
                return True
            if s == 'False' or s == '0' or s == 'false':
                return False
            raise ValueError('Value of config_arg %s is not boolean' % name)
        else:
            return type(config_args.get(name, default))

    return get_config_arg

Q
qijun 已提交
3363

Z
zhangjinchao01 已提交
3364 3365 3366 3367 3368 3369 3370 3371 3372 3373 3374 3375
def importlib(name):
    __import__(name)
    return sys.modules[name]


def find_caller():
    stack = traceback.extract_stack()
    for s in stack[-4::-1]:
        if not s[0].endswith('config_parser.py'):
            return s[0], s[1], s[2]
    return "(unknown file)", 0, "(unknown function)"

Q
qijun 已提交
3376

Z
zhangjinchao01 已提交
3377 3378 3379 3380
def my_fatal(s):
    logger.critical(s)
    raise Exception()

Y
Yu Yang 已提交
3381

3382
_parse_config_hooks = set()
Y
Yu Yang 已提交
3383 3384


3385 3386 3387 3388 3389 3390 3391
def register_parse_config_hook(f):
    """
    Register a hook function for parse_config. parse_config will invoke the hook
    at the beginning of parse. This make it possible to reset global state for
    for constructing the model.
    """
    _parse_config_hooks.add(f)
Q
qijun 已提交
3392

Y
Yu Yang 已提交
3393

Z
zhangjinchao01 已提交
3394 3395 3396 3397 3398 3399
def parse_config(config_file, config_arg_str):
    '''
    @param config_arg_str: a string of the form var1=val1,var2=val2. It will be
    passed to config script as a dictionary CONFIG_ARGS
    '''
    init_config_environment()
3400 3401
    for hook in _parse_config_hooks:
        hook()
Z
zhangjinchao01 已提交
3402 3403 3404 3405 3406 3407 3408 3409 3410 3411 3412 3413 3414 3415 3416 3417 3418 3419 3420 3421 3422 3423 3424 3425 3426 3427 3428

    config_args = {}

    logger.findCaller = find_caller
    logger.fatal = my_fatal

    g_config.model_config.type = "nn"
    if config_arg_str:
        config_args = dict([f.split('=') for f in config_arg_str.split(',')])

    global g_command_config_args
    g_command_config_args.update(config_args)

    extension_module_name = config_args.get('extension_module_name')
    if extension_module_name:
        global g_extended_config_funcs
        extension_module = importlib(extension_module_name)
        g_extended_config_funcs = extension_module.get_config_funcs(g_config)

    g_config.model_config.type = 'nn'

    global g_current_submodel, g_root_submodel
    g_root_submodel = g_config.model_config.sub_models.add()
    g_root_submodel.name = 'root'
    g_root_submodel.is_recurrent_layer_group = False
    g_current_submodel = g_root_submodel

H
hanchao 已提交
3429 3430 3431 3432 3433 3434 3435 3436 3437 3438
    # for paddle on spark, need support non-file config.
    # you can use parse_config like below:
    #
    # from paddle.trainer.config_parser import parse_config
    # def configs():
    #    #your paddle config code, which is same as config file.
    #
    # config = parse_config(configs, "is_predict=1")
    # # then you get config proto object.
    if hasattr(config_file, '__call__'):
L
Luo Tao 已提交
3439 3440 3441
        config_file.func_globals.update(
            make_config_environment("", config_args))
        config_file()
H
hanchao 已提交
3442
    else:
L
Luo Tao 已提交
3443
        execfile(config_file, make_config_environment(config_file, config_args))
Z
zhangjinchao01 已提交
3444 3445 3446
    for k, v in settings.iteritems():
        if v is None:
            continue
Q
qijun 已提交
3447
        g_config.opt_config.__setattr__(k, v)
Z
zhangjinchao01 已提交
3448 3449 3450 3451 3452 3453 3454 3455 3456 3457 3458 3459 3460 3461 3462 3463 3464 3465 3466 3467 3468 3469 3470 3471 3472 3473

    for k, v in trainer_settings.iteritems():
        if v is None:
            continue
        g_config.__setattr__(k, v)

    for name in g_config.model_config.input_layer_names:
        assert name in g_layer_map, \
            'input name "%s" does not correspond to a layer name' % name
        assert (g_layer_map[name].type == "data" or g_layer_map[name].type == "data_trim"), \
            'The type of input layer "%s" is not "data"' % name
    for name in g_config.model_config.output_layer_names:
        assert name in g_layer_map, \
            'input name "%s" does not correspond to a layer name' % name
    return g_config


def parse_config_and_serialize(config_file, config_arg_str):
    try:
        config = parse_config(config_file, config_arg_str)
        #logger.info(config)
        return config.SerializeToString()
    except:
        traceback.print_exc()
        raise

Q
qijun 已提交
3474

Z
zhangjinchao01 已提交
3475 3476 3477 3478 3479 3480 3481 3482
if __name__ == '__main__':
    try:
        config = parse_config(sys.argv[1], '')
        config.SerializeToString()
        __real_print__(str(config))
    except:
        traceback.print_exc()
        raise