prefetch_op.cc 3.5 KB
Newer Older
Q
Qiao Longfei 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

15
#include <future>  // NOLINT
Q
Qiao Longfei 已提交
16 17 18 19 20
#include <ostream>

#include "paddle/fluid/framework/data_type.h"
#include "paddle/fluid/framework/lod_tensor.h"
#include "paddle/fluid/framework/op_registry.h"
G
gongweibao 已提交
21
#include "paddle/fluid/operators/detail/macros.h"
W
Wu Yi 已提交
22
#include "paddle/fluid/operators/distributed_ops/send_recv_util.h"
Q
Qiao Longfei 已提交
23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43

namespace paddle {
namespace operators {

class PrefetchOp : public framework::OperatorBase {
 public:
  PrefetchOp(const std::string& type, const framework::VariableNameMap& inputs,
             const framework::VariableNameMap& outputs,
             const framework::AttributeMap& attrs)
      : OperatorBase(type, inputs, outputs, attrs) {}

  void RunImpl(const framework::Scope& scope,
               const platform::Place& place) const override {
    auto ins = Inputs("X");
    auto outs = Outputs("Out");

    std::vector<std::string> epmap = Attr<std::vector<std::string>>("epmap");

    platform::DeviceContextPool& pool = platform::DeviceContextPool::Instance();
    auto& ctx = *pool.Get(place);

44
    distributed::RPCClient* rpc_client =
W
Wu Yi 已提交
45 46
        distributed::RPCClient::GetInstance<RPCCLIENT_T>(
            Attr<int>("trainer_id"));
Q
Qiao Longfei 已提交
47

48
    std::vector<distributed::VarHandlePtr> rets;
Q
Qiao Longfei 已提交
49 50
    for (size_t i = 0; i < ins.size(); i++) {
      if (NeedSend(scope, ins[i])) {
51 52
        VLOG(30) << "sending " << ins[i] << " to " << epmap[i] << " to get "
                 << outs[i] << " back";
53 54
        rets.push_back(rpc_client->AsyncPrefetchVar(epmap[i], ctx, scope,
                                                    ins[i], outs[i]));
Q
Qiao Longfei 已提交
55
      } else {
56
        VLOG(30) << "don't send no-initialied variable: " << ins[i];
Q
Qiao Longfei 已提交
57 58
      }
    }
59 60 61
    for (size_t i = 0; i < rets.size(); i++) {
      PADDLE_ENFORCE(rets[i]->Wait(), "internal error in RPCClient");
    }
Q
Qiao Longfei 已提交
62 63 64 65 66
  }
};

class PrefetchOpMaker : public framework::OpProtoAndCheckerMaker {
 public:
Y
Yu Yang 已提交
67
  void Make() {
Q
Qiao Longfei 已提交
68 69
    AddInput("X", "(LoDTensor) Input Id variables to be sent").AsDuplicable();
    AddOutput("Out",
70
              "(LoDTensor) result "
Q
Qiao Longfei 已提交
71 72
              "to be fetched from parameter server")
        .AsDuplicable();
W
Wu Yi 已提交
73
    AddAttr<int>("trainer_id", "trainer id from 0 ~ worker_num.").SetDefault(0);
Q
Qiao Longfei 已提交
74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100
    AddAttr<std::vector<std::string>>(
        "epmap",
        "(string vector, default 127.0.0.1:6164)"
        "Server endpoints in the order of input variables for mapping")
        .SetDefault({"127.0.0.1:6164"});
    AddComment(R"DOC(
Prefetch operator

This operator will send Ids variables to listen_and_serve op at
the parameter server and fetch result back.
)DOC");
  }
};

class PrefetchOpShapeInference : public framework::InferShapeBase {
 public:
  void operator()(framework::InferShapeContext* ctx) const override {}
};

}  // namespace operators
}  // namespace paddle

namespace ops = paddle::operators;

REGISTER_OPERATOR(prefetch, ops::PrefetchOp,
                  paddle::framework::EmptyGradOpMaker, ops::PrefetchOpMaker,
                  ops::PrefetchOpShapeInference);