sequence_conv_op.h 11.3 KB
Newer Older
C
chengduoZH 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#pragma once
#include "paddle/framework/eigen.h"
#include "paddle/framework/op_registry.h"
C
chengduoZH 已提交
18
#include "paddle/operators/math/math_function.h"
C
chengduoZH 已提交
19
#include "paddle/operators/math/sequence_project.h"
C
chengduoZH 已提交
20 21 22 23 24 25

namespace paddle {
namespace operators {

using Tensor = framework::Tensor;
using LoDTensor = framework::LoDTensor;
C
chengduoZH 已提交
26 27 28
// template <typename T, int MajorType = Eigen::RowMajor,
//          typename IndexType = Eigen::DenseIndex>
// using EigenVector = framework::EigenVector<T, MajorType, IndexType>;
C
chengduoZH 已提交
29 30 31 32 33
template <typename T, int MajorType = Eigen::RowMajor,
          typename IndexType = Eigen::DenseIndex>
using EigenMatrix = framework::EigenMatrix<T, MajorType, IndexType>;

template <typename Place, typename T>
C
chengduoZH 已提交
34
class SequenceConvKernel : public framework::OpKernel<T> {
C
chengduoZH 已提交
35 36 37 38
 public:
  void Compute(const framework::ExecutionContext& context) const override {
    auto* in = context.Input<LoDTensor>("X");
    auto* out = context.Output<LoDTensor>("Out");
C
chengduoZH 已提交
39
    auto filter = *context.Input<LoDTensor>("Filter");
40

C
chengduoZH 已提交
41
    out->mutable_data<T>(context.GetPlace());
C
chengduoZH 已提交
42 43 44 45

    int context_start = context.Attr<int>("context_start");
    int context_length = context.Attr<int>("context_length");
    int context_stride = context.Attr<int>("context_stride");
C
chengduoZH 已提交
46
    bool padding_trainable = context.Attr<bool>("padding_trainable");
C
chengduoZH 已提交
47 48 49 50 51 52 53 54 55 56 57 58

    // InferShape by in_lod
    PADDLE_ENFORCE_EQ(in->lod().size(), 1UL,
                      "Only support one level sequence now.");

    const LoDTensor* padding_data = nullptr;
    if (padding_trainable) {
      padding_data = context.Input<LoDTensor>("PaddingData");
    }

    int up_pad = std::max(0, -context_start);
    int down_pad = std::max(0, context_start + context_length - 1);
C
chengduoZH 已提交
59
    int sequence_width;
C
chengduoZH 已提交
60
    sequence_width = static_cast<int>(in->dims()[1]);
C
chengduoZH 已提交
61

C
chengduoZH 已提交
62 63 64 65 66 67 68 69 70
    // use col_shape in the im2col calculation
    framework::DDim col_shape = {in->dims()[0],
                                 sequence_width * context_length};
    LoDTensor col;
    col.mutable_data<T>(col_shape, context.GetPlace());
    // Because if padding_trainable is false, padding data should be zeros.
    auto temp = framework::EigenVector<T>::Flatten(col);
    temp.device(context.GetEigenDevice<Place>()) =
        temp.constant(static_cast<T>(0));
71

C
chengduoZH 已提交
72 73
    paddle::operators::math::SequenceProjectFunctor<Place, T>
        seq_project_functor;
74

C
chengduoZH 已提交
75 76 77
    seq_project_functor(context.device_context(), in, padding_data, &col,
                        padding_trainable, context_start, context_length,
                        context_stride, up_pad, down_pad);
78

C
chengduoZH 已提交
79 80 81
    filter.Resize(framework::make_ddim({context_length * sequence_width, 1}));
    math::matmul<Place, T>(context.device_context(), col, false, filter, false,
                           T(1.0), out, T(0.0));
C
chengduoZH 已提交
82 83 84 85
  }
};

template <typename Place, typename T>
C
chengduoZH 已提交
86
class SequenceConvGradKernel : public framework::OpKernel<T> {
C
chengduoZH 已提交
87 88 89 90
 public:
  void Compute(const framework::ExecutionContext& context) const override {
    auto* out_g = context.Input<LoDTensor>(framework::GradVarName("Out"));
    auto* in_g = context.Output<LoDTensor>(framework::GradVarName("X"));
C
chengduoZH 已提交
91 92
    auto* filter_g =
        context.Output<LoDTensor>(framework::GradVarName("Filter"));
C
chengduoZH 已提交
93 94
    auto* padding_data_g =
        context.Output<LoDTensor>(framework::GradVarName("PaddingData"));
95
    auto* in = context.Input<LoDTensor>("X");
C
chengduoZH 已提交
96 97
    auto* filter = context.Input<LoDTensor>("Filter");

C
chengduoZH 已提交
98 99 100 101
    auto place = context.GetEigenDevice<Place>();

    int context_start = context.Attr<int>("context_start");
    int context_length = context.Attr<int>("context_length");
102
    int context_stride = context.Attr<int>("context_stride");
C
chengduoZH 已提交
103
    bool padding_trainable = context.Attr<bool>("padding_trainable");
C
chengduoZH 已提交
104 105

    // InferShape by in_lod
106
    PADDLE_ENFORCE_EQ(in->lod().size(), 1UL,
C
chengduoZH 已提交
107
                      "Only support one level sequence now.");
108
    auto lod_g_level_0 = in->lod()[0];
C
chengduoZH 已提交
109

C
chengduoZH 已提交
110 111
    int up_pad = std::max(0, -context_start);
    int down_pad = std::max(0, context_start + context_length - 1);
112 113
    int sequence_height, sequence_width;
    int input_row_begin, input_row_end;
C
chengduoZH 已提交
114

C
chengduoZH 已提交
115 116
    sequence_width = static_cast<int>(in->dims()[1]);

C
chengduoZH 已提交
117 118 119 120 121 122 123 124 125 126 127 128 129 130
    // use col_shape in the im2col calculation
    framework::DDim col_shape = {in->dims()[0],
                                 sequence_width * context_length};
    LoDTensor col;

    if (in_g || filter_g || (padding_trainable && padding_data_g)) {
      col.mutable_data<T>(col_shape, context.GetPlace());
      // Because if padding_trainable is false, padding data should be zeros.
      auto temp = framework::EigenVector<T>::Flatten(col);
      temp.device(context.GetEigenDevice<Place>()) =
          temp.constant(static_cast<T>(0));
      math::matmul<Place, T>(context.device_context(), *out_g, false, *filter,
                             true, T(1.0), &col, T(1.0));
    }
C
chengduoZH 已提交
131

C
chengduoZH 已提交
132 133
    if (in_g) {
      in_g->mutable_data<T>(context.GetPlace());
C
chengduoZH 已提交
134

C
chengduoZH 已提交
135 136
      math::SetConstant<Place, T> functor;
      functor(context.device_context(), in_g, 0);
137

C
chengduoZH 已提交
138 139 140 141
      paddle::operators::math::Col2ImFunctor<
          paddle::operators::math::ColFormat::kOCF, Place, float>
          col2im_ocf;

C
chengduoZH 已提交
142 143 144 145 146 147
      for (int i = 0; i < static_cast<int>(lod_g_level_0.size()) - 1; ++i) {
        input_row_begin =
            (context_start > 0)
                ? static_cast<int>(lod_g_level_0[i]) + context_start
                : static_cast<int>(lod_g_level_0[i]);
        input_row_end = static_cast<int>(lod_g_level_0[i + 1]);
C
chengduoZH 已提交
148

C
chengduoZH 已提交
149 150
        Tensor col_t = col.Slice(static_cast<int>(lod_g_level_0[i]),
                                 static_cast<int>(lod_g_level_0[i + 1]));
C
chengduoZH 已提交
151

C
chengduoZH 已提交
152
        sequence_height = static_cast<int>(col_t.dims()[0]);
C
chengduoZH 已提交
153 154 155 156 157 158 159

        if (input_row_begin < input_row_end) {
          Tensor in_t = in_g->Slice(input_row_begin, input_row_end);

          std::vector<int64_t> output_shape(
              {sequence_height, 1, 1, context_length,
               sequence_width});  // output_height, output_width,
C
chengduoZH 已提交
160 161
                                  // input_channels, filter_height, filter_width
          col_t.Resize(framework::make_ddim(output_shape));
C
chengduoZH 已提交
162 163 164 165 166 167

          std::vector<int64_t> input_shape(
              {1, input_row_end - input_row_begin,
               sequence_width});  // input_channels, input_height, input_width
          in_t.Resize(framework::make_ddim(input_shape));

C
chengduoZH 已提交
168
          col2im_ocf(context.device_context(), in_t, col_t,
C
chengduoZH 已提交
169 170 171
                     /*stride_height*/ context_stride, /*stride_width*/ 0,
                     up_pad, down_pad);
        }
C
chengduoZH 已提交
172
        col_t.Resize(framework::make_ddim(
C
chengduoZH 已提交
173 174 175 176 177 178
            {sequence_height, context_length * sequence_width}));
      }
    }

    if (padding_trainable && padding_data_g) {
      padding_data_g->mutable_data<T>(context.GetPlace());
C
chengduoZH 已提交
179

C
chengduoZH 已提交
180 181 182 183 184 185 186 187 188 189
      math::SetConstant<Place, T> functor;
      functor(context.device_context(), padding_data_g, 0);

      for (int i = 0; i < static_cast<int>(lod_g_level_0.size()) - 1; ++i) {
        input_row_begin =
            (context_start > 0)
                ? static_cast<int>(lod_g_level_0[i]) + context_start
                : static_cast<int>(lod_g_level_0[i]);
        input_row_end = static_cast<int>(lod_g_level_0[i + 1]);

C
chengduoZH 已提交
190 191
        Tensor col_t = col.Slice(static_cast<int>(lod_g_level_0[i]),
                                 static_cast<int>(lod_g_level_0[i + 1]));
C
chengduoZH 已提交
192

C
chengduoZH 已提交
193
        sequence_height = static_cast<int>(col_t.dims()[0]);
194

C
chengduoZH 已提交
195
        col_t.Resize(framework::make_ddim(
196 197 198 199 200 201 202 203 204 205
            {sequence_height * context_length, sequence_width}));

        if (up_pad > 0) {  // add up pad
          int padding_rows = std::min(
              up_pad,
              static_cast<int>(lod_g_level_0[i + 1] - lod_g_level_0[i]));

          for (int k = 0; k < padding_rows; ++k) {
            int padding_size =
                k + context_length < up_pad ? context_length : up_pad - k;
C
chengduoZH 已提交
206 207
            Tensor out_t_sub = col_t.Slice(k * context_length,
                                           k * context_length + padding_size);
C
chengduoZH 已提交
208
            Tensor w_sub = padding_data_g->Slice(k, k + padding_size);
209 210 211 212
            // in this block, using EigenVector<T>::Flatten is ok too.
            auto out_t_sub_e = EigenMatrix<T>::From(out_t_sub);
            auto w_sub_e = EigenMatrix<T>::From(w_sub);
            w_sub_e.device(place) = w_sub_e + out_t_sub_e;
C
chengduoZH 已提交
213
          }
214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232
        }
        if (down_pad > 0) {  // add down pad
          int down_pad_begin_row =
              std::max(0,
                       (sequence_height - context_start - context_length) + 1) +
              1;
          int padding_begin = std::max(0, context_start - sequence_height);
          int padding_size =
              sequence_height - context_start >= context_length
                  ? 1
                  : context_length - (sequence_height - context_start);
          if (context_start >= sequence_height) padding_size = context_length;
          int padding_idx = padding_begin;
          for (int t = 0; t + down_pad_begin_row <= sequence_height;
               ++t, ++padding_size) {
            if (context_start >= sequence_height) padding_size = context_length;
            if (padding_size > context_length) {
              padding_size = context_length;
              padding_idx++;
C
chengduoZH 已提交
233
            }
234 235
            if (padding_begin > 0 || sequence_height == context_start)
              padding_idx = padding_begin + t;
C
chengduoZH 已提交
236
            Tensor out_t_sub = col_t.Slice(
237 238
                (down_pad_begin_row + t) * context_length - padding_size,
                (down_pad_begin_row + t) * context_length);
C
chengduoZH 已提交
239
            Tensor w_sub = padding_data_g->Slice(
240 241 242 243
                up_pad + padding_idx, up_pad + padding_idx + padding_size);
            auto out_t_sub_e = EigenMatrix<T>::From(out_t_sub);
            auto w_sub_e = EigenMatrix<T>::From(w_sub);
            w_sub_e.device(place) = w_sub_e + out_t_sub_e;
C
chengduoZH 已提交
244 245
          }
        }
C
chengduoZH 已提交
246
        col_t.Resize(framework::make_ddim(
C
chengduoZH 已提交
247
            {sequence_height, context_length * sequence_width}));
248
      }
C
chengduoZH 已提交
249
    }
C
chengduoZH 已提交
250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279

    if (filter_g) {
      filter_g->mutable_data<T>(context.GetPlace());

      math::SetConstant<Place, T> functor;
      functor(context.device_context(), filter_g, 0);

      Tensor filter_grad_ = *filter_g;
      Tensor out_grad_ = *out_g;

      const LoDTensor* padding_data = nullptr;
      if (padding_trainable) {
        padding_data = context.Input<LoDTensor>("PaddingData");
      }

      sequence_width = static_cast<int>(in->dims()[1]);

      paddle::operators::math::SequenceProjectFunctor<Place, T>
          seq_project_functor;

      seq_project_functor(context.device_context(), in, padding_data, &col,
                          padding_trainable, context_start, context_length,
                          context_stride, up_pad, down_pad);

      filter_grad_.Resize(
          framework::make_ddim({context_length * sequence_width, 1}));

      math::matmul<Place, T>(context.device_context(), col, true, out_grad_,
                             false, T(1.0), &filter_grad_, T(1.0));
    }
C
chengduoZH 已提交
280 281 282 283 284
  }
};

}  // namespace operators
}  // namespace paddle