vehicle_plateutils.py 21.9 KB
Newer Older
Z
zhiboniu 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import argparse
import os
import sys
import platform
import cv2
import numpy as np
import paddle
from PIL import Image, ImageDraw, ImageFont
import math
from paddle import inference
import time
import ast


def argsparser():
    parser = argparse.ArgumentParser(description=__doc__)
Z
zhiboniu 已提交
31 32
    parser.add_argument(
        "--config", type=str, default=None, help=("Path of configure"))
Z
zhiboniu 已提交
33 34 35 36 37 38 39 40
    parser.add_argument("--det_algorithm", type=str, default='DB')
    parser.add_argument("--det_model_dir", type=str)
    parser.add_argument("--det_limit_side_len", type=float, default=960)
    parser.add_argument("--det_limit_type", type=str, default='max')
    parser.add_argument("--rec_algorithm", type=str, default='SVTR_LCNet')
    parser.add_argument("--rec_model_dir", type=str)
    parser.add_argument("--rec_image_shape", type=str, default="3, 48, 320")
    parser.add_argument("--rec_batch_num", type=int, default=6)
Z
zhiboniu 已提交
41 42 43
    parser.add_argument(
        "--word_dict_path",
        type=str,
Z
zhiboniu 已提交
44
        default="deploy/pphuman/ppvehicle/rec_word_dict.txt")
Z
zhiboniu 已提交
45 46 47 48 49 50 51 52 53 54 55 56 57
    parser.add_argument(
        "--image_file", type=str, default=None, help="Path of image file.")
    parser.add_argument(
        "--image_dir",
        type=str,
        default=None,
        help="Dir of image file, `image_file` has a higher priority.")
    parser.add_argument(
        "--video_file",
        type=str,
        default=None,
        help="Path of video file, `video_file` or `camera_id` has a highest priority."
    )
Z
zhiboniu 已提交
58 59 60 61 62 63 64
    parser.add_argument(
        "--video_dir",
        type=str,
        default=None,
        help="Dir of video file, `video_file` has a higher priority.")
    parser.add_argument(
        "--model_dir", nargs='*', help="set model dir in pipeline")
Z
zhiboniu 已提交
65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111
    parser.add_argument(
        "--camera_id",
        type=int,
        default=-1,
        help="device id of camera to predict.")
    parser.add_argument(
        "--output_dir",
        type=str,
        default="output",
        help="Directory of output visualization files.")
    parser.add_argument(
        "--run_mode",
        type=str,
        default='paddle',
        help="mode of running(paddle/trt_fp32/trt_fp16/trt_int8)")
    parser.add_argument(
        "--device",
        type=str,
        default='cpu',
        help="Choose the device you want to run, it can be: CPU/GPU/XPU, default is CPU."
    )
    parser.add_argument(
        "--enable_mkldnn",
        type=ast.literal_eval,
        default=False,
        help="Whether use mkldnn with CPU.")
    parser.add_argument(
        "--cpu_threads", type=int, default=1, help="Num of threads with CPU.")
    parser.add_argument(
        "--trt_min_shape", type=int, default=1, help="min_shape for TensorRT.")
    parser.add_argument(
        "--trt_max_shape",
        type=int,
        default=1280,
        help="max_shape for TensorRT.")
    parser.add_argument(
        "--trt_opt_shape",
        type=int,
        default=640,
        help="opt_shape for TensorRT.")
    parser.add_argument(
        "--trt_calib_mode",
        type=bool,
        default=False,
        help="If the model is produced by TRT offline quantitative "
        "calibration, trt_calib_mode need to set True.")
    parser.add_argument(
Z
zhiboniu 已提交
112
        "--do_entrance_counting",
Z
zhiboniu 已提交
113
        action='store_true',
Z
zhiboniu 已提交
114 115 116
        help="Whether counting the numbers of identifiers entering "
        "or getting out from the entrance. Note that only support one-class"
        "counting, multi-class counting is coming soon.")
Z
zhiboniu 已提交
117
    parser.add_argument(
Z
zhiboniu 已提交
118
        "--secs_interval",
Z
zhiboniu 已提交
119
        type=int,
Z
zhiboniu 已提交
120 121
        default=2,
        help="The seconds interval to count after tracking")
Z
zhiboniu 已提交
122
    parser.add_argument(
Z
zhiboniu 已提交
123 124 125
        "--draw_center_traj",
        action='store_true',
        help="Whether drawing the trajectory of center")
Z
zhiboniu 已提交
126 127 128
    return parser


Z
zhiboniu 已提交
129
def create_predictor(args, cfg, mode):
Z
zhiboniu 已提交
130
    if mode == "det":
Z
zhiboniu 已提交
131
        model_dir = cfg['det_model_dir']
Z
zhiboniu 已提交
132
    else:
Z
zhiboniu 已提交
133
        model_dir = cfg['rec_model_dir']
Z
zhiboniu 已提交
134 135 136 137 138 139 140 141 142 143 144 145 146 147 148

    if model_dir is None:
        print("not find {} model file path {}".format(mode, model_dir))
        sys.exit(0)

    model_file_path = model_dir + "/inference.pdmodel"
    params_file_path = model_dir + "/inference.pdiparams"
    if not os.path.exists(model_file_path):
        raise ValueError("not find model file path {}".format(model_file_path))
    if not os.path.exists(params_file_path):
        raise ValueError("not find params file path {}".format(
            params_file_path))

    config = inference.Config(model_file_path, params_file_path)

Z
zhiboniu 已提交
149 150
    batch_size = 1

Z
zhiboniu 已提交
151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239
    if args.device == "GPU":
        gpu_id = get_infer_gpuid()
        if gpu_id is None:
            print(
                "GPU is not found in current device by nvidia-smi. Please check your device or ignore it if run on jetson."
            )
        config.enable_use_gpu(500, 0)

        precision_map = {
            'trt_int8': inference.PrecisionType.Int8,
            'trt_fp32': inference.PrecisionType.Float32,
            'trt_fp16': inference.PrecisionType.Half
        }
        if args.run_mode in precision_map.keys():
            config.enable_tensorrt_engine(
                workspace_size=(1 << 25) * batch_size,
                max_batch_size=batch_size,
                min_subgraph_size=min_subgraph_size,
                precision_mode=precision_map[args.run_mode],
                use_static=False,
                use_calib_mode=trt_calib_mode)

            # skip the minmum trt subgraph
        use_dynamic_shape = True
        if mode == "det":
            min_input_shape = {
                "x": [1, 3, 50, 50],
                "conv2d_92.tmp_0": [1, 120, 20, 20],
                "conv2d_91.tmp_0": [1, 24, 10, 10],
                "conv2d_59.tmp_0": [1, 96, 20, 20],
                "nearest_interp_v2_1.tmp_0": [1, 256, 10, 10],
                "nearest_interp_v2_2.tmp_0": [1, 256, 20, 20],
                "conv2d_124.tmp_0": [1, 256, 20, 20],
                "nearest_interp_v2_3.tmp_0": [1, 64, 20, 20],
                "nearest_interp_v2_4.tmp_0": [1, 64, 20, 20],
                "nearest_interp_v2_5.tmp_0": [1, 64, 20, 20],
                "elementwise_add_7": [1, 56, 2, 2],
                "nearest_interp_v2_0.tmp_0": [1, 256, 2, 2]
            }
            max_input_shape = {
                "x": [1, 3, 1536, 1536],
                "conv2d_92.tmp_0": [1, 120, 400, 400],
                "conv2d_91.tmp_0": [1, 24, 200, 200],
                "conv2d_59.tmp_0": [1, 96, 400, 400],
                "nearest_interp_v2_1.tmp_0": [1, 256, 200, 200],
                "conv2d_124.tmp_0": [1, 256, 400, 400],
                "nearest_interp_v2_2.tmp_0": [1, 256, 400, 400],
                "nearest_interp_v2_3.tmp_0": [1, 64, 400, 400],
                "nearest_interp_v2_4.tmp_0": [1, 64, 400, 400],
                "nearest_interp_v2_5.tmp_0": [1, 64, 400, 400],
                "elementwise_add_7": [1, 56, 400, 400],
                "nearest_interp_v2_0.tmp_0": [1, 256, 400, 400]
            }
            opt_input_shape = {
                "x": [1, 3, 640, 640],
                "conv2d_92.tmp_0": [1, 120, 160, 160],
                "conv2d_91.tmp_0": [1, 24, 80, 80],
                "conv2d_59.tmp_0": [1, 96, 160, 160],
                "nearest_interp_v2_1.tmp_0": [1, 256, 80, 80],
                "nearest_interp_v2_2.tmp_0": [1, 256, 160, 160],
                "conv2d_124.tmp_0": [1, 256, 160, 160],
                "nearest_interp_v2_3.tmp_0": [1, 64, 160, 160],
                "nearest_interp_v2_4.tmp_0": [1, 64, 160, 160],
                "nearest_interp_v2_5.tmp_0": [1, 64, 160, 160],
                "elementwise_add_7": [1, 56, 40, 40],
                "nearest_interp_v2_0.tmp_0": [1, 256, 40, 40]
            }
            min_pact_shape = {
                "nearest_interp_v2_26.tmp_0": [1, 256, 20, 20],
                "nearest_interp_v2_27.tmp_0": [1, 64, 20, 20],
                "nearest_interp_v2_28.tmp_0": [1, 64, 20, 20],
                "nearest_interp_v2_29.tmp_0": [1, 64, 20, 20]
            }
            max_pact_shape = {
                "nearest_interp_v2_26.tmp_0": [1, 256, 400, 400],
                "nearest_interp_v2_27.tmp_0": [1, 64, 400, 400],
                "nearest_interp_v2_28.tmp_0": [1, 64, 400, 400],
                "nearest_interp_v2_29.tmp_0": [1, 64, 400, 400]
            }
            opt_pact_shape = {
                "nearest_interp_v2_26.tmp_0": [1, 256, 160, 160],
                "nearest_interp_v2_27.tmp_0": [1, 64, 160, 160],
                "nearest_interp_v2_28.tmp_0": [1, 64, 160, 160],
                "nearest_interp_v2_29.tmp_0": [1, 64, 160, 160]
            }
            min_input_shape.update(min_pact_shape)
            max_input_shape.update(max_pact_shape)
            opt_input_shape.update(opt_pact_shape)
        elif mode == "rec":
Z
zhiboniu 已提交
240
            imgH = int(cfg['rec_image_shape'][-2])
Z
zhiboniu 已提交
241
            min_input_shape = {"x": [1, 3, imgH, 10]}
Z
zhiboniu 已提交
242 243
            max_input_shape = {"x": [batch_size, 3, imgH, 2304]}
            opt_input_shape = {"x": [batch_size, 3, imgH, 320]}
Z
zhiboniu 已提交
244 245
        elif mode == "cls":
            min_input_shape = {"x": [1, 3, 48, 10]}
Z
zhiboniu 已提交
246 247
            max_input_shape = {"x": [batch_size, 3, 48, 1024]}
            opt_input_shape = {"x": [batch_size, 3, 48, 320]}
Z
zhiboniu 已提交
248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281
        else:
            use_dynamic_shape = False
        if use_dynamic_shape:
            config.set_trt_dynamic_shape_info(min_input_shape, max_input_shape,
                                              opt_input_shape)

    else:
        config.disable_gpu()
        if hasattr(args, "cpu_threads"):
            config.set_cpu_math_library_num_threads(args.cpu_threads)
        else:
            # default cpu threads as 10
            config.set_cpu_math_library_num_threads(10)
        if args.enable_mkldnn:
            # cache 10 different shapes for mkldnn to avoid memory leak
            config.set_mkldnn_cache_capacity(10)
            config.enable_mkldnn()
            if args.run_mode == "fp16":
                config.enable_mkldnn_bfloat16()
    # enable memory optim
    config.enable_memory_optim()
    config.disable_glog_info()
    config.delete_pass("conv_transpose_eltwiseadd_bn_fuse_pass")
    config.delete_pass("matmul_transpose_reshape_fuse_pass")
    if mode == 'table':
        config.delete_pass("fc_fuse_pass")  # not supported for table
    config.switch_use_feed_fetch_ops(False)
    config.switch_ir_optim(True)

    # create predictor
    predictor = inference.create_predictor(config)
    input_names = predictor.get_input_names()
    for name in input_names:
        input_tensor = predictor.get_input_handle(name)
Z
zhiboniu 已提交
282
    output_tensors = get_output_tensors(cfg, mode, predictor)
Z
zhiboniu 已提交
283 284 285
    return predictor, input_tensor, output_tensors, config


Z
zhiboniu 已提交
286
def get_output_tensors(cfg, mode, predictor):
Z
zhiboniu 已提交
287 288
    output_names = predictor.get_output_names()
    output_tensors = []
Z
zhiboniu 已提交
289
    if mode == "rec" and cfg['rec_algorithm'] in ["CRNN", "SVTR_LCNet"]:
Z
zhiboniu 已提交
290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611
        output_name = 'softmax_0.tmp_0'
        if output_name in output_names:
            return [predictor.get_output_handle(output_name)]
        else:
            for output_name in output_names:
                output_tensor = predictor.get_output_handle(output_name)
                output_tensors.append(output_tensor)
    else:
        for output_name in output_names:
            output_tensor = predictor.get_output_handle(output_name)
            output_tensors.append(output_tensor)
    return output_tensors


def get_infer_gpuid():
    sysstr = platform.system()
    if sysstr == "Windows":
        return 0

    if not paddle.fluid.core.is_compiled_with_rocm():
        cmd = "env | grep CUDA_VISIBLE_DEVICES"
    else:
        cmd = "env | grep HIP_VISIBLE_DEVICES"
    env_cuda = os.popen(cmd).readlines()
    if len(env_cuda) == 0:
        return 0
    else:
        gpu_id = env_cuda[0].strip().split("=")[1]
        return int(gpu_id[0])


def draw_e2e_res(dt_boxes, strs, img_path):
    src_im = cv2.imread(img_path)
    for box, str in zip(dt_boxes, strs):
        box = box.astype(np.int32).reshape((-1, 1, 2))
        cv2.polylines(src_im, [box], True, color=(255, 255, 0), thickness=2)
        cv2.putText(
            src_im,
            str,
            org=(int(box[0, 0, 0]), int(box[0, 0, 1])),
            fontFace=cv2.FONT_HERSHEY_COMPLEX,
            fontScale=0.7,
            color=(0, 255, 0),
            thickness=1)
    return src_im


def draw_text_det_res(dt_boxes, img_path):
    src_im = cv2.imread(img_path)
    for box in dt_boxes:
        box = np.array(box).astype(np.int32).reshape(-1, 2)
        cv2.polylines(src_im, [box], True, color=(255, 255, 0), thickness=2)
    return src_im


def resize_img(img, input_size=600):
    """
    resize img and limit the longest side of the image to input_size
    """
    img = np.array(img)
    im_shape = img.shape
    im_size_max = np.max(im_shape[0:2])
    im_scale = float(input_size) / float(im_size_max)
    img = cv2.resize(img, None, None, fx=im_scale, fy=im_scale)
    return img


def draw_ocr(image,
             boxes,
             txts=None,
             scores=None,
             drop_score=0.5,
             font_path="./doc/fonts/simfang.ttf"):
    """
    Visualize the results of OCR detection and recognition
    args:
        image(Image|array): RGB image
        boxes(list): boxes with shape(N, 4, 2)
        txts(list): the texts
        scores(list): txxs corresponding scores
        drop_score(float): only scores greater than drop_threshold will be visualized
        font_path: the path of font which is used to draw text
    return(array):
        the visualized img
    """
    if scores is None:
        scores = [1] * len(boxes)
    box_num = len(boxes)
    for i in range(box_num):
        if scores is not None and (scores[i] < drop_score or
                                   math.isnan(scores[i])):
            continue
        box = np.reshape(np.array(boxes[i]), [-1, 1, 2]).astype(np.int64)
        image = cv2.polylines(np.array(image), [box], True, (255, 0, 0), 2)
    if txts is not None:
        img = np.array(resize_img(image, input_size=600))
        txt_img = text_visual(
            txts,
            scores,
            img_h=img.shape[0],
            img_w=600,
            threshold=drop_score,
            font_path=font_path)
        img = np.concatenate([np.array(img), np.array(txt_img)], axis=1)
        return img
    return image


def draw_ocr_box_txt(image,
                     boxes,
                     txts,
                     scores=None,
                     drop_score=0.5,
                     font_path="./doc/simfang.ttf"):
    h, w = image.height, image.width
    img_left = image.copy()
    img_right = Image.new('RGB', (w, h), (255, 255, 255))

    import random

    random.seed(0)
    draw_left = ImageDraw.Draw(img_left)
    draw_right = ImageDraw.Draw(img_right)
    for idx, (box, txt) in enumerate(zip(boxes, txts)):
        if scores is not None and scores[idx] < drop_score:
            continue
        color = (random.randint(0, 255), random.randint(0, 255),
                 random.randint(0, 255))
        draw_left.polygon(box, fill=color)
        draw_right.polygon(
            [
                box[0][0], box[0][1], box[1][0], box[1][1], box[2][0],
                box[2][1], box[3][0], box[3][1]
            ],
            outline=color)
        box_height = math.sqrt((box[0][0] - box[3][0])**2 + (box[0][1] - box[3][
            1])**2)
        box_width = math.sqrt((box[0][0] - box[1][0])**2 + (box[0][1] - box[1][
            1])**2)
        if box_height > 2 * box_width:
            font_size = max(int(box_width * 0.9), 10)
            font = ImageFont.truetype(font_path, font_size, encoding="utf-8")
            cur_y = box[0][1]
            for c in txt:
                char_size = font.getsize(c)
                draw_right.text(
                    (box[0][0] + 3, cur_y), c, fill=(0, 0, 0), font=font)
                cur_y += char_size[1]
        else:
            font_size = max(int(box_height * 0.8), 10)
            font = ImageFont.truetype(font_path, font_size, encoding="utf-8")
            draw_right.text(
                [box[0][0], box[0][1]], txt, fill=(0, 0, 0), font=font)
    img_left = Image.blend(image, img_left, 0.5)
    img_show = Image.new('RGB', (w * 2, h), (255, 255, 255))
    img_show.paste(img_left, (0, 0, w, h))
    img_show.paste(img_right, (w, 0, w * 2, h))
    return np.array(img_show)


def str_count(s):
    """
    Count the number of Chinese characters,
    a single English character and a single number
    equal to half the length of Chinese characters.
    args:
        s(string): the input of string
    return(int):
        the number of Chinese characters
    """
    import string
    count_zh = count_pu = 0
    s_len = len(s)
    en_dg_count = 0
    for c in s:
        if c in string.ascii_letters or c.isdigit() or c.isspace():
            en_dg_count += 1
        elif c.isalpha():
            count_zh += 1
        else:
            count_pu += 1
    return s_len - math.ceil(en_dg_count / 2)


def text_visual(texts,
                scores,
                img_h=400,
                img_w=600,
                threshold=0.,
                font_path="./doc/simfang.ttf"):
    """
    create new blank img and draw txt on it
    args:
        texts(list): the text will be draw
        scores(list|None): corresponding score of each txt
        img_h(int): the height of blank img
        img_w(int): the width of blank img
        font_path: the path of font which is used to draw text
    return(array):
    """
    if scores is not None:
        assert len(texts) == len(
            scores), "The number of txts and corresponding scores must match"

    def create_blank_img():
        blank_img = np.ones(shape=[img_h, img_w], dtype=np.int8) * 255
        blank_img[:, img_w - 1:] = 0
        blank_img = Image.fromarray(blank_img).convert("RGB")
        draw_txt = ImageDraw.Draw(blank_img)
        return blank_img, draw_txt

    blank_img, draw_txt = create_blank_img()

    font_size = 20
    txt_color = (0, 0, 0)
    font = ImageFont.truetype(font_path, font_size, encoding="utf-8")

    gap = font_size + 5
    txt_img_list = []
    count, index = 1, 0
    for idx, txt in enumerate(texts):
        index += 1
        if scores[idx] < threshold or math.isnan(scores[idx]):
            index -= 1
            continue
        first_line = True
        while str_count(txt) >= img_w // font_size - 4:
            tmp = txt
            txt = tmp[:img_w // font_size - 4]
            if first_line:
                new_txt = str(index) + ': ' + txt
                first_line = False
            else:
                new_txt = '    ' + txt
            draw_txt.text((0, gap * count), new_txt, txt_color, font=font)
            txt = tmp[img_w // font_size - 4:]
            if count >= img_h // gap - 1:
                txt_img_list.append(np.array(blank_img))
                blank_img, draw_txt = create_blank_img()
                count = 0
            count += 1
        if first_line:
            new_txt = str(index) + ': ' + txt + '   ' + '%.3f' % (scores[idx])
        else:
            new_txt = "  " + txt + "  " + '%.3f' % (scores[idx])
        draw_txt.text((0, gap * count), new_txt, txt_color, font=font)
        # whether add new blank img or not
        if count >= img_h // gap - 1 and idx + 1 < len(texts):
            txt_img_list.append(np.array(blank_img))
            blank_img, draw_txt = create_blank_img()
            count = 0
        count += 1
    txt_img_list.append(np.array(blank_img))
    if len(txt_img_list) == 1:
        blank_img = np.array(txt_img_list[0])
    else:
        blank_img = np.concatenate(txt_img_list, axis=1)
    return np.array(blank_img)


def base64_to_cv2(b64str):
    import base64
    data = base64.b64decode(b64str.encode('utf8'))
    data = np.fromstring(data, np.uint8)
    data = cv2.imdecode(data, cv2.IMREAD_COLOR)
    return data


def draw_boxes(image, boxes, scores=None, drop_score=0.5):
    if scores is None:
        scores = [1] * len(boxes)
    for (box, score) in zip(boxes, scores):
        if score < drop_score:
            continue
        box = np.reshape(np.array(box), [-1, 1, 2]).astype(np.int64)
        image = cv2.polylines(np.array(image), [box], True, (255, 0, 0), 2)
    return image


def get_rotate_crop_image(img, points):
    '''
    img_height, img_width = img.shape[0:2]
    left = int(np.min(points[:, 0]))
    right = int(np.max(points[:, 0]))
    top = int(np.min(points[:, 1]))
    bottom = int(np.max(points[:, 1]))
    img_crop = img[top:bottom, left:right, :].copy()
    points[:, 0] = points[:, 0] - left
    points[:, 1] = points[:, 1] - top
    '''
    assert len(points) == 4, "shape of points must be 4*2"
    img_crop_width = int(
        max(
            np.linalg.norm(points[0] - points[1]),
            np.linalg.norm(points[2] - points[3])))
    img_crop_height = int(
        max(
            np.linalg.norm(points[0] - points[3]),
            np.linalg.norm(points[1] - points[2])))
    pts_std = np.float32([[0, 0], [img_crop_width, 0],
                          [img_crop_width, img_crop_height],
                          [0, img_crop_height]])
    M = cv2.getPerspectiveTransform(points, pts_std)
    dst_img = cv2.warpPerspective(
        img,
        M, (img_crop_width, img_crop_height),
        borderMode=cv2.BORDER_REPLICATE,
        flags=cv2.INTER_CUBIC)
    dst_img_height, dst_img_width = dst_img.shape[0:2]
    if dst_img_height * 1.0 / dst_img_width >= 1.5:
        dst_img = np.rot90(dst_img)
    return dst_img


def check_gpu(use_gpu):
    if use_gpu and not paddle.is_compiled_with_cuda():
        use_gpu = False
    return use_gpu


if __name__ == '__main__':
    pass