lookup_table_op.cc 7.3 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
2

L
Luo Tao 已提交
3 4 5
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
6

L
Luo Tao 已提交
7
    http://www.apache.org/licenses/LICENSE-2.0
8

L
Luo Tao 已提交
9 10 11 12 13
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
14

Y
Yi Wang 已提交
15 16
#include "paddle/fluid/operators/lookup_table_op.h"
#include "paddle/fluid/framework/var_type_inference.h"
17 18 19 20 21 22 23 24

namespace paddle {
namespace operators {

class LookupTableOp : public framework::OperatorWithKernel {
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;

25
  void InferShape(framework::InferShapeContext* ctx) const override {
Q
Qiao Longfei 已提交
26 27 28 29 30 31 32 33 34 35
    PADDLE_ENFORCE(ctx->HasInput("W"),
                   "Input(W) of LookupTableOp should not be null.");
    PADDLE_ENFORCE(ctx->HasInput("Ids"),
                   "Input(Ids) of LookupTableOp should not be null.");
    PADDLE_ENFORCE(ctx->HasOutput("Out"),
                   "Output(Out) of LookupTableOp should not be null.");

    auto table_dims = ctx->GetInputDim("W");
    auto ids_dims = ctx->GetInputDim("Ids");

C
chengduoZH 已提交
36
    auto ids_var_type = ctx->GetInputsVarType("Ids").front();
C
chengduoZH 已提交
37 38 39
    // lookup_table and concat_rows use the same InferShape, for lookup_table,
    // ids_var_type should be LoDTensor, for concat_rows, it should be
    // SelectedRows.
C
chengduoZH 已提交
40 41 42 43
    if (ids_var_type == framework::proto::VarType::LOD_TENSOR) {
      PADDLE_ENFORCE_EQ(ids_dims.size(), 2);
      PADDLE_ENFORCE_EQ(ids_dims[1], 1);
    }
44

Q
Qiao Longfei 已提交
45 46
    ctx->SetOutputDim("Out", {ids_dims[0], table_dims[1]});
    ctx->ShareLoD("Ids", /*->*/ "Out");
47
  }
Y
Yu Yang 已提交
48

49
 protected:
50
  framework::OpKernelType GetExpectedKernelType(
Y
Yu Yang 已提交
51
      const framework::ExecutionContext& ctx) const override {
Y
Yu Yang 已提交
52 53 54
    return framework::OpKernelType(
        framework::ToDataType(ctx.Input<LoDTensor>("W")->type()),
        ctx.device_context());
Y
Yu Yang 已提交
55
  }
56 57 58 59
};

class LookupTableOpMaker : public framework::OpProtoAndCheckerMaker {
 public:
60
  LookupTableOpMaker(OpProto* proto, OpAttrChecker* op_checker)
61 62
      : OpProtoAndCheckerMaker(proto, op_checker) {
    AddInput("W",
K
kexinzhao 已提交
63 64
             "An input represents embedding tensors, "
             "which is a learnable parameter.");
65
    AddInput("Ids",
K
kexinzhao 已提交
66 67 68 69 70 71 72 73 74
             "An input with type int32 or int64 "
             "contains the ids to be looked up in W. "
             "Ids must be a column vector with rank = 2. "
             "The 2nd dimension size must be 1.");
    AddOutput("Out", "The lookup results, which have the same type as W.");
    AddAttr<bool>("is_sparse",
                  "(boolean, default false) "
                  "Sparse update")
        .SetDefault(false);
75 76 77 78 79
    AddAttr<int64_t>("padding_idx",
                     "(int64, default -1) "
                     "If the value is -1, it makes no effect to lookup. "
                     "Otherwise the given value indicates padding the output "
                     "with zeros whenever lookup encounters it in Ids.")
80
        .SetDefault(-1);
81
    AddComment(R"DOC(
K
kexinzhao 已提交
82 83
Lookup Table Operator.

84 85 86
This operator is used to perform lookups on the parameter W,
then concatenated into a dense tensor.

K
kexinzhao 已提交
87 88 89
The input Ids can carry the LoD (Level of Details) information,
or not. And the output only shares the LoD information with input Ids.

90
)DOC");
91 92 93
  }
};

C
chengduoZH 已提交
94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131
class ConcatRowsOpMaker : public framework::OpProtoAndCheckerMaker {
 public:
  ConcatRowsOpMaker(OpProto* proto, OpAttrChecker* op_checker)
      : OpProtoAndCheckerMaker(proto, op_checker) {
    AddInput("W",
             "(Tensor) The input tensor of concat_rows operator. "
             "The rank of this tensor is 2.");
    AddInput(
        "Ids",
        "(SelectedRows) The rows of Ids contains the index to be looked up "
        "in W.");
    AddOutput("Out",
              "(SelectedRows or Tensor) The result of concatenating, which "
              "have the same type as W.");
    AddAttr<bool>("is_sparse",
                  "(boolean, default true) This attribution is invalid, it's "
                  "only used by `Lookup Table Operator`.")
        .SetDefault(true);
    AddAttr<int64_t>("padding_idx",
                     "(int64, default -1) "
                     "If the value is -1, it makes no effect to lookup. "
                     "Otherwise the given value indicates padding the output "
                     "with zeros whenever lookup encounters it in Ids.")
        .SetDefault(-1);

    AddComment(R"DOC(
ConcatRows Operator.

This operator is used to perform lookups on the W(dense tensor) according to
rows contained by Idx(sparse tensor), then concatenates them into a sparse
tensor or dense tensor.

The type of Ids(Input) is SelectedRows.

)DOC");
  }
};

132 133 134 135 136 137 138 139 140
class LookupTableOpGradDescMaker
    : public framework::DefaultGradOpDescMaker<true> {
  using ::paddle::framework::DefaultGradOpDescMaker<
      true>::DefaultGradOpDescMaker;

 protected:
  virtual std::string GradOpType() const { return "lookup_table_grad"; }
};

141 142 143 144
class LookupTableOpGrad : public framework::OperatorWithKernel {
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;

145
  void InferShape(framework::InferShapeContext* ctx) const override {
Q
Qiao Longfei 已提交
146 147
    auto table_dims = ctx->GetInputDim("W");
    ctx->SetOutputDim(framework::GradVarName("W"), table_dims);
148
  }
Y
Yu Yang 已提交
149

150
 protected:
151
  framework::OpKernelType GetExpectedKernelType(
Y
Yu Yang 已提交
152
      const framework::ExecutionContext& ctx) const override {
Y
Yu Yang 已提交
153 154 155
    return framework::OpKernelType(
        framework::ToDataType(ctx.Input<LoDTensor>("W")->type()),
        ctx.device_context());
Y
Yu Yang 已提交
156
  }
157 158
};

159 160
class LookupTableOpGradVarTypeInference : public framework::VarTypeInference {
 public:
Y
Yu Yang 已提交
161 162
  void operator()(const framework::OpDesc& op_desc,
                  framework::BlockDesc* block) const override {
163 164 165 166 167 168
    auto out_var_name = op_desc.Output(framework::GradVarName("W")).front();
    auto attr = op_desc.GetAttr("is_sparse");
    bool is_sparse = boost::get<bool>(attr);
    if (is_sparse) {
      VLOG(3) << "lookup_table_grad op " << framework::GradVarName("W")
              << " is set to SelectedRows";
169
      block->Var(out_var_name)
170
          ->SetType(framework::proto::VarType::SELECTED_ROWS);
171 172 173
    } else {
      VLOG(3) << "lookup_table_grad op " << framework::GradVarName("W")
              << " is set to LoDTensor";
174
      block->Var(out_var_name)->SetType(framework::proto::VarType::LOD_TENSOR);
175 176 177 178
    }
  }
};

179 180 181 182
}  // namespace operators
}  // namespace paddle

namespace ops = paddle::operators;
183 184 185 186 187 188 189 190 191
REGISTER_OPERATOR(lookup_table, ops::LookupTableOp,
                  ops::LookupTableOpGradDescMaker, ops::LookupTableOpMaker);
REGISTER_OPERATOR(lookup_table_grad, ops::LookupTableOpGrad,
                  ops::LookupTableOpGradVarTypeInference);

REGISTER_OP_CPU_KERNEL(lookup_table, ops::LookupTableKernel<float>,
                       ops::LookupTableKernel<double>);
REGISTER_OP_CPU_KERNEL(lookup_table_grad, ops::LookupTableGradKernel<float>,
                       ops::LookupTableGradKernel<double>);
C
chengduoZH 已提交
192 193 194 195 196

// concat_rows is used by regularization and it doesn't have gradient operation.
REGISTER_OPERATOR(concat_rows, ops::LookupTableOp, ops::ConcatRowsOpMaker);
REGISTER_OP_CPU_KERNEL(concat_rows, ops::LookupTableKernel<float>,
                       ops::LookupTableKernel<double>);