sequence_conv_op.cc 7.4 KB
Newer Older
C
chengduoZH 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

C
chengduoZH 已提交
15
#include "paddle/operators/sequence_conv_op.h"
C
chengduoZH 已提交
16 17 18 19

namespace paddle {
namespace operators {

C
chengduoZH 已提交
20
class SequenceConvOp : public framework::OperatorWithKernel {
C
chengduoZH 已提交
21 22 23 24 25 26
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;

 protected:
  void InferShape(framework::InferShapeContext* ctx) const override {
    PADDLE_ENFORCE(ctx->HasInput("X"),
C
chengduoZH 已提交
27 28 29
                   "Input(X) of SequenceConvOp should not be null.");
    PADDLE_ENFORCE(ctx->HasInput("Filter"),
                   "Input(Filter) of SequenceConvOp should not be null.");
C
chengduoZH 已提交
30
    PADDLE_ENFORCE(ctx->HasOutput("Out"),
C
chengduoZH 已提交
31
                   "Output(Out) of SequenceConvOp should not be null.");
C
chengduoZH 已提交
32 33 34 35 36

    int context_length = ctx->Attrs().Get<int>("context_length");
    bool padding_trainable = ctx->Attrs().Get<bool>("padding_trainable");
    int context_start = ctx->Attrs().Get<int>("context_start");

C
chengduoZH 已提交
37 38 39 40
    auto in_dims = ctx->GetInputDim("X");
    auto filter_dims = ctx->GetInputDim("Filter");
    PADDLE_ENFORCE(in_dims.size() == 2 && filter_dims.size() == 2,
                   "Input(X, Filter) should be 2-D tensor.");
C
chengduoZH 已提交
41 42 43
    PADDLE_ENFORCE(filter_dims[0] == context_length * in_dims[1],
                   "Filter's height should be context_length * "
                   "number_of_input_features .");
C
chengduoZH 已提交
44

C
chengduoZH 已提交
45
    if (padding_trainable) {
C
chengduoZH 已提交
46 47 48
      PADDLE_ENFORCE(
          ctx->HasInput("PaddingData"),
          "Input(PaddingData) of SequenceConvOp should not be null.");
49
      framework::DDim padding_dim = ctx->GetInputDim("PaddingData");
C
chengduoZH 已提交
50 51 52 53 54
      int up_pad = std::max(0, -context_start);
      int down_pad = std::max(0, context_start + context_length - 1);
      int total_pad = up_pad + down_pad;
      int input_width = static_cast<int>(in_dims[1]);

55 56
      if (context_start == 0 && context_length == 1) {
        PADDLE_THROW(
C
chengduoZH 已提交
57
            "If context_start is 0 and context_length is 1, padding_trainable "
58 59
            "should be false.");
      }
C
chengduoZH 已提交
60 61 62 63 64 65 66 67
      PADDLE_ENFORCE(padding_dim.size() == 2,
                     "Input(PaddingData) should be 2-D tensor.");
      PADDLE_ENFORCE(
          padding_dim[0] == total_pad && padding_dim[1] == input_width,
          "Input(PaddingData)'s shape is not consistent with 'context_start' "
          "and 'context_length'.");
    }

C
chengduoZH 已提交
68
    in_dims[1] = filter_dims[1];
C
chengduoZH 已提交
69
    ctx->SetOutputDim("Out", in_dims);
C
chengduoZH 已提交
70
    ctx->ShareLoD("X", "Out");
C
chengduoZH 已提交
71 72 73
  }
};

C
chengduoZH 已提交
74
class SequenceConvGradOp : public framework::OperatorWithKernel {
C
chengduoZH 已提交
75 76 77 78 79 80
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;

 protected:
  void InferShape(framework::InferShapeContext* ctx) const override {
    PADDLE_ENFORCE(ctx->HasInput(framework::GradVarName("Out")),
C
chengduoZH 已提交
81 82
                   "Gradient of output(Out) should not be null.");
    PADDLE_ENFORCE(ctx->HasInput("X"), "The input(X) should not be null.");
C
chengduoZH 已提交
83

C
chengduoZH 已提交
84 85
    if (ctx->Attrs().Get<bool>("padding_trainable") &&
        ctx->HasOutput(framework::GradVarName("PaddingData"))) {
C
chengduoZH 已提交
86 87
      ctx->SetOutputDim(framework::GradVarName("PaddingData"),
                        ctx->GetInputDim("PaddingData"));
C
chengduoZH 已提交
88
    }
C
chengduoZH 已提交
89 90 91
    if (ctx->HasOutput(framework::GradVarName("X"))) {
      ctx->SetOutputDim(framework::GradVarName("X"), ctx->GetInputDim("X"));
    }
C
chengduoZH 已提交
92 93 94 95
    if (ctx->HasOutput(framework::GradVarName("Filter"))) {
      ctx->SetOutputDim(framework::GradVarName("Filter"),
                        ctx->GetInputDim("Filter"));
    }
C
chengduoZH 已提交
96 97 98
  }
};

C
chengduoZH 已提交
99
class SequenceConvOpMaker : public framework::OpProtoAndCheckerMaker {
C
chengduoZH 已提交
100
 public:
C
chengduoZH 已提交
101 102
  SequenceConvOpMaker(framework::OpProto* proto,
                      framework::OpAttrChecker* op_checker)
C
chengduoZH 已提交
103
      : OpProtoAndCheckerMaker(proto, op_checker) {
C
chengduoZH 已提交
104 105 106 107 108 109
    AddInput(
        "X",
        "(LoDTensor) the input(X) is a LodTensor, which support "
        "variable-time length input sequence. The underlying tensor in "
        "this LoDTensor is a matrix with shape (T, D), where, T is the "
        "total time steps in this mini-batch, D is the input feature size.");
C
chengduoZH 已提交
110
    AddInput("PaddingData",
C
chengduoZH 已提交
111 112 113 114 115 116 117 118
             "(Tensor, optional) the input(PaddingData) is an optional "
             "parameter, and it is learnable. "
             "This is a tensor with shape (N, D), where N is the "
             "top_pad + bottom_pad, D is the input feature size. In order to "
             "ensure the equal length of sequence before and after "
             "convolution, it is necessary to fill the top and bottom of each "
             "sequence according to context_length, context_stride and "
             "context_start")
C
chengduoZH 已提交
119
        .AsDispensable();
C
chengduoZH 已提交
120
    AddInput("Filter",
C
chengduoZH 已提交
121 122 123 124 125 126 127 128 129
             "(Tensor) the input(Filter) is an learnable parameter."
             "This is a tensor with shape (N, D), where N is the "
             "context_length, D is the output feature size.");
    AddOutput(
        "Out",
        "(LoDTensor) the output(Out) is a LodTensor, which support "
        "variable-time length output sequence. The underlying tensor in "
        "this LoDTensor is a matrix with shape (T, D), where, T is the "
        "total time steps in this mini-batch, D is the output feature size.");
C
chengduoZH 已提交
130 131

    AddAttr<bool>("padding_trainable",
C
chengduoZH 已提交
132
                  "(bool, default false) the padding data of SequenceConvOp "
C
chengduoZH 已提交
133 134 135
                  "is trainable or not.")
        .SetDefault(false);
    AddAttr<int>("context_length",
C
chengduoZH 已提交
136 137
                 "(int, default 3) the context_length of SequenceConvOp is the "
                 "height of the convolution kernel.")
C
chengduoZH 已提交
138 139 140
        .SetDefault(3)
        .GreaterThan(0);
    AddAttr<int>("context_start",
C
chengduoZH 已提交
141 142 143
                 "(int, default 0) the context_start of SequenceConvOp "
                 "represents the beginning of the convolution of the number of "
                 "rows of sequence, which can be negative.")
C
chengduoZH 已提交
144 145
        .SetDefault(0);
    AddAttr<int>("context_stride",
C
chengduoZH 已提交
146 147 148
                 "(int, default 1) the context_stride of SequenceConvOp "
                 "represents the step length of convolution. "
                 "Currently, SequenceConvOp only supports"
C
chengduoZH 已提交
149
                 "context_stride=1.")
C
chengduoZH 已提交
150
        .SetDefault(1)
C
chengduoZH 已提交
151
        .GreaterThan(0);
C
chengduoZH 已提交
152 153

    AddComment(R"DOC(
C
chengduoZH 已提交
154 155 156 157
    SequenceConvOp performs convolution operation on features of
    context_length time-steps of each instance.
    The convolution operation calculates the output based on the input, filter
    and strides, paddings parameters. The size of each dimension of the
C
chengduoZH 已提交
158 159 160 161
    parameters is checked in the infer-shape. In order to ensure the equal
    length of sequence before and after convolution, it is necessary to fill
    the top and bottom of each sequence according to context_length,
    context_stride and context_start.
C
chengduoZH 已提交
162 163 164 165 166 167 168 169
    )DOC");
  }
};

}  // namespace operators
}  // namespace paddle

namespace ops = paddle::operators;
C
chengduoZH 已提交
170 171
REGISTER_OP(sequence_conv, ops::SequenceConvOp, ops::SequenceConvOpMaker,
            sequence_conv_grad, ops::SequenceConvGradOp);
C
chengduoZH 已提交
172 173

REGISTER_OP_CPU_KERNEL(
C
chengduoZH 已提交
174
    sequence_conv, ops::SequenceConvKernel<paddle::platform::CPUPlace, float>);
C
chengduoZH 已提交
175
REGISTER_OP_CPU_KERNEL(
C
chengduoZH 已提交
176 177
    sequence_conv_grad,
    ops::SequenceConvGradKernel<paddle::platform::CPUPlace, float>);