MODEL_ZOO.md 13.0 KB
Newer Older
K
Kaipeng Deng 已提交
1 2 3 4 5 6 7 8 9 10
# 压缩模型库

## 测试环境

- Python 2.7.1
- PaddlePaddle >=1.6
- CUDA 9.0
- cuDNN >=7.4
- NCCL 2.1.2

K
Kaipeng Deng 已提交
11
## 剪裁模型库
K
Kaipeng Deng 已提交
12 13 14

### 训练策略

15
- 剪裁模型训练时使用[PaddleDetection模型库](../docs/MODEL_ZOO_cn.md)发布的模型权重作为预训练权重。
K
Kaipeng Deng 已提交
16 17 18
- 剪裁训练使用模型默认配置,即除`pretrained_weights`外配置不变。
- 剪裁模型全部为基于敏感度的卷积通道剪裁。
- YOLOv3模型主要剪裁`yolo_head`部分,即剪裁参数如下。
K
Kaipeng Deng 已提交
19 20 21 22

```
--pruned_params="yolo_block.0.0.0.conv.weights,yolo_block.0.0.1.conv.weights,yolo_block.0.1.0.conv.weights,yolo_block.0.1.1.conv.weights,yolo_block.0.2.conv.weights,yolo_block.0.tip.conv.weights,yolo_block.1.0.0.conv.weights,yolo_block.1.0.1.conv.weights,yolo_block.1.1.0.conv.weights,yolo_block.1.1.1.conv.weights,yolo_block.1.2.conv.weights,yolo_block.1.tip.conv.weights,yolo_block.2.0.0.conv.weights,yolo_block.2.0.1.conv.weights,yolo_block.2.1.0.conv.weights,yolo_block.2.1.1.conv.weights,yolo_block.2.2.conv.weights,yolo_block.2.tip.conv.weights"
```
K
Kaipeng Deng 已提交
23
- YOLOv3模型剪裁中剪裁策略`r578`表示`yolo_head`中三个输出分支一次使用`0.5, 0.7, 0.8`的剪裁率剪裁,即剪裁率如下。
K
Kaipeng Deng 已提交
24 25 26 27 28

```
--pruned_ratios="0.5,0.5,0.5,0.5,0.5,0.5,0.7,0.7,0.7,0.7,0.7,0.7,0.8,0.8,0.8,0.8,0.8,0.8"
```

K
Kaipeng Deng 已提交
29
- YOLOv3模型剪裁中剪裁策略`sensity`表示`yolo_head`中各参数剪裁率如下,该剪裁率为使用`yolov3_mobilnet_v1`模型在COCO数据集上敏感度实验分析得出。
K
Kaipeng Deng 已提交
30 31 32 33 34 35 36

```
--pruned_ratios="0.1,0.2,0.2,0.2,0.2,0.1,0.2,0.3,0.3,0.3,0.2,0.1,0.3,0.4,0.4,0.4,0.4,0.3"
```

### YOLOv3 on COCO

K
Kaipeng Deng 已提交
37 38 39 40 41 42 43 44 45 46
| 骨架网络         |  剪裁策略 | FLOPs剪裁率 | 模型体积剪裁率 | 输入尺寸 | Box AP  |                           下载                          |
| :----------------| :-------: | :---------: | :------------: | :------: | :-----: | :-----------------------------------------------------: |
| ResNet50-vd-dcn  |  sensity  |   18.41%    |     15.46%     |   608    |  39.8   | [下载链接](https://paddlemodels.bj.bcebos.com/PaddleSlim/prune/yolov3_r50vd_dcn_prune1x.tar) |
| ResNet50-vd-dcn  |   r578    |   43.69%    |     36.61%     |   608    |  38.3   | [下载链接](https://paddlemodels.bj.bcebos.com/PaddleSlim/prune/yolov3_r50vd_dcn_prune578.tar) |
| MobileNetV1      |  sensity  |   28.76%    |     28.54%     |   608    |  30.2   | [下载链接](https://paddlemodels.bj.bcebos.com/PaddleSlim/prune/yolov3_mobilenet_v1_prune1x.tar) |
| MobileNetV1      |  sensity  |   28.76%    |     28.54%     |   416    |  29.7   | [下载链接](https://paddlemodels.bj.bcebos.com/PaddleSlim/prune/yolov3_mobilenet_v1_prune1x.tar) |
| MobileNetV1      |  sensity  |   28.76%    |     28.54%     |   320    |  27.2   | [下载链接](https://paddlemodels.bj.bcebos.com/PaddleSlim/prune/yolov3_mobilenet_v1_prune1x.tar) |
| MobileNetV1      |   r578    |   67.56%    |     66.90%     |   608    |  27.8   | [下载链接](https://paddlemodels.bj.bcebos.com/PaddleSlim/prune/yolov3_mobilenet_v1_prune578.tar) |
| MobileNetV1      |   r578    |   67.56%    |     66.90%     |   416    |  26.8   | [下载链接](https://paddlemodels.bj.bcebos.com/PaddleSlim/prune/yolov3_mobilenet_v1_prune578.tar) |
| MobileNetV1      |   r578    |   67.56%    |     66.90%     |   320    |  24.0   | [下载链接](https://paddlemodels.bj.bcebos.com/PaddleSlim/prune/yolov3_mobilenet_v1_prune578.tar) |
K
Kaipeng Deng 已提交
47 48 49

### YOLOv3 on Pascal VOC

K
Kaipeng Deng 已提交
50 51 52 53 54 55 56 57
| 骨架网络         |  剪裁策略 | FLOPs剪裁率 | 模型体积剪裁率 | 输入尺寸 | Box AP  |                           下载                          |
| :----------------| :-------: | :---------: | :------------: | :------: | :-----: | :-----------------------------------------------------: |
| MobileNetV1      |  sensity  |   34.55%    |     28.75%     |   608    |  78.4   | [下载链接](https://paddlemodels.bj.bcebos.com/PaddleSlim/prune/yolov3_mobilenet_v1_voc_prune1x.tar) |
| MobileNetV1      |  sensity  |   34.55%    |     28.75%     |   416    |  78.7   | [下载链接](https://paddlemodels.bj.bcebos.com/PaddleSlim/prune/yolov3_mobilenet_v1_voc_prune1x.tar) |
| MobileNetV1      |  sensity  |   34.55%    |     28.75%     |   320    |  76.1   | [下载链接](https://paddlemodels.bj.bcebos.com/PaddleSlim/prune/yolov3_mobilenet_v1_voc_prune1x.tar) |
| MobileNetV1      |   r578    |   69.57%    |     67.00%     |   608    |  77.6   | [下载链接](https://paddlemodels.bj.bcebos.com/PaddleSlim/prune/yolov3_mobilenet_v1_voc_prune578.tar) |
| MobileNetV1      |   r578    |   69.57%    |     67.00%     |   416    |  77.7   | [下载链接](https://paddlemodels.bj.bcebos.com/PaddleSlim/prune/yolov3_mobilenet_v1_voc_prune578.tar) |
| MobileNetV1      |   r578    |   69.57%    |     67.00%     |   320    |  75.5   | [下载链接](https://paddlemodels.bj.bcebos.com/PaddleSlim/prune/yolov3_mobilenet_v1_voc_prune578.tar) |
K
Kaipeng Deng 已提交
58

K
Kaipeng Deng 已提交
59 60
### 蒸馏通道剪裁模型

61
可通过高精度模型蒸馏通道剪裁后模型的方式,训练方法及相关示例见[蒸馏通道剪裁模型](./extensions/distill_pruned_model/distill_pruned_model_demo.ipynb)
K
Kaipeng Deng 已提交
62 63 64

COCO数据集上蒸馏通道剪裁模型库如下。

K
Kaipeng Deng 已提交
65 66 67 68 69 70
| 骨架网络         |  剪裁策略 | FLOPs剪裁率 | 模型体积剪裁率 | 输入尺寸 |      teacher模型       | Box AP  |                           下载                          |
| :----------------| :-------: | :---------: | :------------: | :------: | :--------------------- | :-----: | :-----------------------------------------------------: |
| ResNet50-vd-dcn  |   r578    |   43.69%    |     36.61%     |   608    | YOLOv3-ResNet50-vd-dcn |  39.7   | [下载链接](https://paddlemodels.bj.bcebos.com/PaddleSlim/prune/yolov3_r50vd_dcn_prune578_distill.tar) |
| MobileNetV1      |   r578    |   67.56%    |     66.90%     |   608    | YOLOv3-ResNet34        |  29.0   | [下载链接](https://paddlemodels.bj.bcebos.com/PaddleSlim/prune/yolov3_mobilenet_v1_prune578_distillby_r34.tar) |
| MobileNetV1      |   r578    |   67.56%    |     66.90%     |   416    | YOLOv3-ResNet34        |  28.0   | [下载链接](https://paddlemodels.bj.bcebos.com/PaddleSlim/prune/yolov3_mobilenet_v1_prune578_distillby_r34.tar) |
| MobileNetV1      |   r578    |   67.56%    |     66.90%     |   320    | YOLOv3-ResNet34        |  25.1   | [下载链接](https://paddlemodels.bj.bcebos.com/PaddleSlim/prune/yolov3_mobilenet_v1_prune578_distillby_r34.tar) |
K
Kaipeng Deng 已提交
71 72 73

Pascal VOC数据集上蒸馏通道剪裁模型库如下。

K
Kaipeng Deng 已提交
74 75 76 77 78
| 骨架网络         |  剪裁策略 | FLOPs剪裁率 | 模型体积剪裁率 | 输入尺寸 |      teacher模型       | Box AP  |                           下载                          |
| :----------------| :-------: | :---------: | :------------: | :------: | :--------------------- | :-----: | :-----------------------------------------------------: |
| MobileNetV1      |   r578    |   69.57%    |     67.00%     |   608    | YOLOv3-ResNet34        |  78.8   | [下载链接](https://paddlemodels.bj.bcebos.com/PaddleSlim/prune/yolov3_mobilenet_v1_voc_prune578_distillby_r34.tar) |
| MobileNetV1      |   r578    |   69.57%    |     67.00%     |   416    | YOLOv3-ResNet34        |  78.7   | [下载链接](https://paddlemodels.bj.bcebos.com/PaddleSlim/prune/yolov3_mobilenet_v1_voc_prune578_distillby_r34.tar) |
| MobileNetV1      |   r578    |   69.57%    |     67.00%     |   320    | YOLOv3-ResNet34        |  76.3   | [下载链接](https://paddlemodels.bj.bcebos.com/PaddleSlim/prune/yolov3_mobilenet_v1_voc_prune578_distillby_r34.tar) |
K
Kaipeng Deng 已提交
79

K
Kaipeng Deng 已提交
80 81 82 83 84

## 蒸馏模型库

### 训练策略

85
- 蒸馏模型训练时teacher模型使用[PaddleDetection模型库](../docs/MODEL_ZOO_cn.md)发布的模型权重作为预训练权重。
K
Kaipeng Deng 已提交
86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137
- 蒸馏模型训练时student模型使用backbone的预训练权重

### YOLOv3 on COCO

| 骨架网络         |    蒸馏策略   | 输入尺寸 | Box AP  |                           下载                          |
| :----------------| :-----------: | :------: |:------: | :-----------------------------------------------------: |
| MobileNetV1      | split_distiil |   608    |  31.4   | [下载链接](https://paddlemodels.bj.bcebos.com/PaddleSlim/yolov3_mobilenetv1_coco_distilled.tar) |
| MobileNetV1      | split_distiil |   416    |  30.0   | [下载链接](https://paddlemodels.bj.bcebos.com/PaddleSlim/yolov3_mobilenetv1_coco_distilled.tar) |
| MobileNetV1      | split_distiil |   320    |  27.1   | [下载链接](https://paddlemodels.bj.bcebos.com/PaddleSlim/yolov3_mobilenetv1_coco_distilled.tar) |

### YOLOv3 on Pascal VOC

| 骨架网络         |    蒸馏策略   | 输入尺寸 | Box AP  |                           下载                          |
| :----------------| :-----------: | :------: |:------: | :-----------------------------------------------------: |
| MobileNetV1      |  l2_distiil   |   608    |  79.0   | [下载链接](https://paddlemodels.bj.bcebos.com/PaddleSlim/yolov3_mobilenetv1_voc_distilled.tar) |
| MobileNetV1      |  l2_distiil   |   416    |  78.2   | [下载链接](https://paddlemodels.bj.bcebos.com/PaddleSlim/yolov3_mobilenetv1_voc_distilled.tar) |
| MobileNetV1      |  l2_distiil   |   320    |  75.5   | [下载链接](https://paddlemodels.bj.bcebos.com/PaddleSlim/yolov3_mobilenetv1_voc_distilled.tar) |

## 量化模型库

### 训练策略

- 量化策略`post`为使用离线量化得到的模型,`aware`为在线量化训练得到的模型。

### YOLOv3 on COCO

| 骨架网络         | 预训练权重 | 量化策略 | 输入尺寸 | Box AP  |                           下载                          |
| :----------------| :--------: | :------: | :------: |:------: | :-----------------------------------------------------: |
| MobileNetV1      |  ImageNet  |   post   |   608    |  27.9   | [下载链接](https://paddlemodels.bj.bcebos.com/PaddleSlim/yolov3_mobilenetv1_coco_quant_post.tar) |
| MobileNetV1      |  ImageNet  |   post   |   416    |  28.0   | [下载链接](https://paddlemodels.bj.bcebos.com/PaddleSlim/yolov3_mobilenetv1_coco_quant_post.tar) |
| MobileNetV1      |  ImageNet  |   post   |   320    |  26.0   | [下载链接](https://paddlemodels.bj.bcebos.com/PaddleSlim/yolov3_mobilenetv1_coco_quant_post.tar) |
| MobileNetV1      |  ImageNet  |  aware   |   608    |  28.1   | [下载链接](https://paddlemodels.bj.bcebos.com/PaddleSlim/yolov3_mobilenetv1_coco_quant_aware.tar) |
| MobileNetV1      |  ImageNet  |  aware   |   416    |  28.2   | [下载链接](https://paddlemodels.bj.bcebos.com/PaddleSlim/yolov3_mobilenetv1_coco_quant_aware.tar) |
| MobileNetV1      |  ImageNet  |  aware   |   320    |  25.8   | [下载链接](https://paddlemodels.bj.bcebos.com/PaddleSlim/yolov3_mobilenetv1_coco_quant_aware.tar) |
| ResNet34         |  ImageNet  |   post   |   608    |  35.7   | [下载链接](https://paddlemodels.bj.bcebos.com/PaddleSlim/yolov3_r34_coco_quant_post.tar) |
| ResNet34         |  ImageNet  |  aware   |   608    |  35.2   | [下载链接](https://paddlemodels.bj.bcebos.com/PaddleSlim/yolov3_r34_coco_quant_aware.tar) |
| ResNet34         |  ImageNet  |  aware   |   416    |  33.3   | [下载链接](https://paddlemodels.bj.bcebos.com/PaddleSlim/yolov3_r34_coco_quant_aware.tar) |
| ResNet34         |  ImageNet  |  aware   |   320    |  30.3   | [下载链接](https://paddlemodels.bj.bcebos.com/PaddleSlim/yolov3_r34_coco_quant_aware.tar) |
| R50vd-dcn        | object365  |  aware   |   608    |  40.6   | [下载链接](https://paddlemodels.bj.bcebos.com/PaddleSlim/yolov3_r50vd_dcn_obj365_pretrained_coco_quant_aware.tar) |
| R50vd-dcn        | object365  |  aware   |   416    |  37.5   | [下载链接](https://paddlemodels.bj.bcebos.com/PaddleSlim/yolov3_r50vd_dcn_obj365_pretrained_coco_quant_aware.tar) |
| R50vd-dcn        | object365  |  aware   |   320    |  34.1   | [下载链接](https://paddlemodels.bj.bcebos.com/PaddleSlim/yolov3_r50vd_dcn_obj365_pretrained_coco_quant_aware.tar) |

### BlazeFace on WIDER FACE

| 模型             | 量化策略 | 输入尺寸 | Easy Set | Medium Set | Hard Set |                           下载                          |
| :--------------- | :------: | :------: | :------: | :--------: | :------: | :-----------------------------------------------------: |
| BlazeFace        |   post   |   640    |   87.8   |    85.1    |   74.9   | [下载链接](https://paddlemodels.bj.bcebos.com/PaddleSlim/blazeface_origin_quant_post.tar) |
| BlazeFace        |  aware   |   640    |   90.5   |    87.9    |   77.6   | [下载链接](https://paddlemodels.bj.bcebos.com/PaddleSlim/blazeface_origin_quant_aware.tar) |
| BlazeFace-Lite   |   post   |   640    |   89.4   |    86.7    |   75.7   | [下载链接](https://paddlemodels.bj.bcebos.com/PaddleSlim/blazeface_lite_quant_post.tar) |
| BlazeFace-Lite   |  aware   |   640    |   89.7   |    87.3    |   77.0   | [下载链接](https://paddlemodels.bj.bcebos.com/PaddleSlim/blazeface_lite_quant_aware.tar) |
| BlazeFace-NAS    |   post   |   640    |   81.6   |    78.3    |   63.6   | [下载链接](https://paddlemodels.bj.bcebos.com/PaddleSlim/blazeface_nas_quant_post.tar) |
| BlazeFace-NAS    |  aware   |   640    |   83.1   |    79.7    |   64.2   | [下载链接](https://paddlemodels.bj.bcebos.com/PaddleSlim/blazeface_nas_quant_aware.tar) |