README_cn.md 18.3 KB
Newer Older
G
Guanghua Yu 已提交
1 2 3 4 5 6
简体中文 | [English](README.md)

# PP-PicoDet

![](../../docs/images/picedet_demo.jpeg)

G
Guanghua Yu 已提交
7 8
## 最新动态

G
Guanghua Yu 已提交
9 10 11 12 13
- 发布全新系列PP-PicoDet模型,引入TAL及Task-aligned Head,优化PAN等结构,精度大幅提升,优化CPU端预测速度,同时训练速度大幅提升。**(2022.03.20)**

## 历史版本模型

- 详情请参考:[PicoDet 2021.10版本](./legacy_model/)
G
Guanghua Yu 已提交
14

G
Guanghua Yu 已提交
15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34
## 简介

PaddleDetection中提出了全新的轻量级系列模型`PP-PicoDet`,在移动端具有卓越的性能,成为全新SOTA轻量级模型。详细的技术细节可以参考我们的[arXiv技术报告](https://arxiv.org/abs/2111.00902)

PP-PicoDet模型有如下特点:

- 🌟 更高的mAP: 第一个在1M参数量之内`mAP(0.5:0.95)`超越**30+**(输入416像素时)。
- 🚀 更快的预测速度: 网络预测在ARM CPU下可达150FPS。
- 😊 部署友好: 支持PaddleLite/MNN/NCNN/OpenVINO等预测库,支持转出ONNX,提供了C++/Python/Android的demo。
- 😍 先进的算法: 我们在现有SOTA算法中进行了创新, 包括:ESNet, CSP-PAN, SimOTA等等。


<div align="center">
  <img src="../../docs/images/picodet_map.png" width='600'/>
</div>

## 基线

| 模型     | 输入尺寸 | mAP<sup>val<br>0.5:0.95 | mAP<sup>val<br>0.5 | 参数量<br><sup>(M) | FLOPS<br><sup>(G) | 预测时延<sup><small>[NCNN](#latency)</small><sup><br><sup>(ms) | 预测时延<sup><small>[Lite](#latency)</small><sup><br><sup>(ms) |  下载  | 配置文件 |
| :-------- | :--------: | :---------------------: | :----------------: | :----------------: | :---------------: | :-----------------------------: | :-----------------------------: | :----------------------------------------: | :--------------------------------------- |
G
Guanghua Yu 已提交
35 36 37 38 39 40 41 42 43
| PicoDet-XS |  320*320   |          23.5           |        36.1       |        -        |       -        |              -              |            -             | [model](https://paddledet.bj.bcebos.com/models/picodet_xs_320_coco_lcnet.pdparams) &#124; [log](https://paddledet.bj.bcebos.com/logs/train_picodet_xs_320_coco_lcnet.log) | [config](https://github.com/PaddlePaddle/PaddleDetection/tree/develop/configs/picodet/picodet_xs_320_coco_lcnet.yml) |
| PicoDet-XS |  416*416   |          26.2           |        39.3        |        -        |       -        |              -              |            -             | [model](https://paddledet.bj.bcebos.com/models/picodet_xs_416_coco_lcnet.pdparams) &#124; [log](https://paddledet.bj.bcebos.com/logs/train_picodet_xs_416_coco_lcnet.log) | [config](https://github.com/PaddlePaddle/PaddleDetection/tree/develop/configs/picodet/picodet_xs_416_coco_lcnet.yml) |
| PicoDet-S |  320*320   |          29.1           |        43.4        |        -       |       -       |             -              |            -             | [model](https://paddledet.bj.bcebos.com/models/picodet_s_320_coco_lcnet.pdparams) &#124; [log](https://paddledet.bj.bcebos.com/logs/train_picodet_s_320_coco_lcnet.log) | [config](https://github.com/PaddlePaddle/PaddleDetection/tree/develop/configs/picodet/picodet_s_320_coco_lcnet.yml) |
| PicoDet-S |  416*416   |          32.5           |        47.6        |        -        |       -       |              -              |            -             | [model](https://paddledet.bj.bcebos.com/models/picodet_s_416_coco_lcnet.pdparams) &#124; [log](https://paddledet.bj.bcebos.com/logs/train_picodet_s_416_coco_lcnet.log) | [config](https://github.com/PaddlePaddle/PaddleDetection/tree/develop/configs/picodet/picodet_s_416_coco_lcnet.yml) |
| PicoDet-M |  320*320   |          34.4           |        50.0        |        -        |       -       |              -              |            -             | [model](https://paddledet.bj.bcebos.com/models/picodet_m_320_coco_lcnet.pdparams) &#124; [log](https://paddledet.bj.bcebos.com/logs/train_picodet_m_320_coco_lcnet.log) | [config](https://github.com/PaddlePaddle/PaddleDetection/tree/develop/configs/picodet/picodet_m_320_coco_lcnet.yml) |
| PicoDet-M |  416*416   |          37.5           |        53.4       |        -        |       -        |              -              |            -            | [model](https://paddledet.bj.bcebos.com/models/picodet_m_416_coco_lcnet.pdparams) &#124; [log](https://paddledet.bj.bcebos.com/logs/train_picodet_m_416_coco_lcnet.log) | [config](https://github.com/PaddlePaddle/PaddleDetection/tree/develop/configs/picodet/picodet_m_416_coco_lcnet.yml) |
| PicoDet-L |  320*320   |          36.1           |        52.0        |        -       |       -        |              -             |            -           | [model](https://paddledet.bj.bcebos.com/models/picodet_l_320_coco_lcnet.pdparams) &#124; [log](https://paddledet.bj.bcebos.com/logs/train_picodet_l_320_coco_lcnet.log) | [config](https://github.com/PaddlePaddle/PaddleDetection/tree/develop/configs/picodet/picodet_l_320_coco_lcnet.yml) |
| PicoDet-L |  416*416   |          39.4           |        55.7        |        -        |       -       |              -              |            -            | [model](https://paddledet.bj.bcebos.com/models/picodet_l_416_coco_lcnet.pdparams) &#124; [log](https://paddledet.bj.bcebos.com/logs/train_picodet_l_416_coco_lcnet.log) | [config](https://github.com/PaddlePaddle/PaddleDetection/tree/develop/configs/picodet/picodet_l_416_coco_lcnet.yml) |
| PicoDet-L |  640*640   |          42.3           |        59.2        |        -        |       -        |              -              |            -           | [model](https://paddledet.bj.bcebos.com/models/picodet_l_640_coco_lcnet.pdparams) &#124; [log](https://paddledet.bj.bcebos.com/logs/train_picodet_l_640_coco_lcnet.log) | [config](https://github.com/PaddlePaddle/PaddleDetection/tree/develop/configs/picodet/picodet_l_640_coco_lcnet.yml) |
G
Guanghua Yu 已提交
44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76


<details open>
<summary><b>注意事项:</b></summary>

- <a name="latency">时延测试:</a> 我们所有的模型都在`骁龙865(4xA77+4xA55)` 上测试(4线程,FP16预测)。上面表格中标有`NCNN`的是使用[NCNN](https://github.com/Tencent/ncnn)库测试,标有`Lite`的是使用[Paddle Lite](https://github.com/PaddlePaddle/Paddle-Lite)进行测试。 测试的benchmark脚本来自: [MobileDetBenchmark](https://github.com/JiweiMaster/MobileDetBenchmark)
- PicoDet在COCO train2017上训练,并且在COCO val2017上进行验证。
- PicoDet使用4卡GPU训练(PicoDet-L-640使用8卡训练),并且所有的模型都是通过发布的默认配置训练得到。

</details>

#### 其他模型的基线

| 模型     | 输入尺寸 | mAP<sup>val<br>0.5:0.95 | mAP<sup>val<br>0.5 | 参数量<br><sup>(M) | FLOPS<br><sup>(G) | 预测时延<sup><small>[NCNN](#latency)</small><sup><br><sup>(ms) |
| :-------- | :--------: | :---------------------: | :----------------: | :----------------: | :---------------: | :-----------------------------: |
| YOLOv3-Tiny |  416*416   |          16.6           |        33.1      |        8.86        |       5.62        |             25.42               |
| YOLOv4-Tiny |  416*416   |          21.7           |        40.2        |        6.06           |       6.96           |             23.69               |
| PP-YOLO-Tiny |  320*320       |          20.6         |        -              |   1.08             |    0.58             |    6.75                           |  
| PP-YOLO-Tiny |  416*416   |          22.7          |    -               |    1.08               |    1.02             |    10.48                          |  
| Nanodet-M |  320*320      |          20.6            |    -               |    0.95               |    0.72             |    8.71                           |  
| Nanodet-M |  416*416   |          23.5             |    -               |    0.95               |    1.2              |  13.35                          |
| Nanodet-M 1.5x |  416*416   |          26.8        |    -                  | 2.08               |    2.42             |    15.83                          |
| YOLOX-Nano     |  416*416   |          25.8          |    -               |    0.91               |    1.08             |    19.23                          |
| YOLOX-Tiny     |  416*416   |          32.8          |    -               |    5.06               |    6.45             |    32.77                          |
| YOLOv5n |  640*640       |          28.4             |    46.0            |    1.9                |    4.5              |    40.35                          |
| YOLOv5s |  640*640       |          37.2             |    56.0            |    7.2                |    16.5             |    78.05                          |


## 快速开始

<details open>
<summary>依赖包:</summary>

G
Guanghua Yu 已提交
77
- PaddlePaddle >= 2.2.1
G
Guanghua Yu 已提交
78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96

</details>

<details>
<summary>安装</summary>

- [安装指导文档](https://github.com/PaddlePaddle/PaddleDetection/blob/develop/docs/tutorials/INSTALL.md)
- [准备数据文档](https://github.com/PaddlePaddle/PaddleDetection/blob/develop/docs/tutorials/PrepareDataSet_en.md)

</details>

<details>
<summary>训练&评估</summary>

- 单卡GPU上训练:

```shell
# training on single-GPU
export CUDA_VISIBLE_DEVICES=0
G
Guanghua Yu 已提交
97
python tools/train.py -c configs/picodet/picodet_s_320_coco_lcnet.yml --eval
G
Guanghua Yu 已提交
98 99 100 101 102 103 104 105
```

- 多卡GPU上训练:


```shell
# training on single-GPU
export CUDA_VISIBLE_DEVICES=0,1,2,3,4,5,6,7
G
Guanghua Yu 已提交
106
python -m paddle.distributed.launch --gpus 0,1,2,3,4,5,6,7 tools/train.py -c configs/picodet/picodet_s_320_coco_lcnet.yml --eval
G
Guanghua Yu 已提交
107 108 109 110 111
```

- 评估:

```shell
G
Guanghua Yu 已提交
112 113
python tools/eval.py -c configs/picodet/picodet_s_320_coco_lcnet.yml \
              -o weights=https://paddledet.bj.bcebos.com/models/picodet_s_320_coco_lcnet.pdparams
G
Guanghua Yu 已提交
114 115 116 117 118
```

- 测试:

```shell
G
Guanghua Yu 已提交
119 120
python tools/infer.py -c configs/picodet/picodet_s_320_coco_lcnet.yml \
              -o weights=https://paddledet.bj.bcebos.com/models/picodet_s_320_coco_lcnet.pdparams
G
Guanghua Yu 已提交
121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136
```

详情请参考[快速开始文档](https://github.com/PaddlePaddle/PaddleDetection/blob/develop/docs/tutorials/GETTING_STARTED.md).

</details>


## 部署

### 导出及转换模型

<details>
<summary>1. 导出模型 (点击展开)</summary>

```shell
cd PaddleDetection
G
Guanghua Yu 已提交
137 138
python tools/export_model.py -c configs/picodet/picodet_s_320_coco_lcnet.yml \
              -o weights=https://paddledet.bj.bcebos.com/models/picodet_s_320_coco_lcnet.pdparams \
G
Guanghua Yu 已提交
139
              --output_dir=inference_model
G
Guanghua Yu 已提交
140 141 142 143 144 145 146
```

</details>

<details>
<summary>2. 转换模型至Paddle Lite (点击展开)</summary>

G
Guanghua Yu 已提交
147
- 安装Paddlelite>=2.10:
G
Guanghua Yu 已提交
148 149 150 151 152 153 154 155 156

```shell
pip install paddlelite
```

- 转换模型至Paddle Lite格式:

```shell
# FP32
G
Guanghua Yu 已提交
157
paddle_lite_opt --model_dir=inference_model/picodet_s_320_coco_lcnet --valid_targets=arm --optimize_out=picodet_s_320_coco_fp32
G
Guanghua Yu 已提交
158
# FP16
G
Guanghua Yu 已提交
159
paddle_lite_opt --model_dir=inference_model/picodet_s_320_coco_lcnet --valid_targets=arm --optimize_out=picodet_s_320_coco_fp16 --enable_fp16=true
G
Guanghua Yu 已提交
160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176
```

</details>

<details>
<summary>3. 转换模型至ONNX (点击展开)</summary>

- 安装[Paddle2ONNX](https://github.com/PaddlePaddle/Paddle2ONNX) >= 0.7 并且 ONNX > 1.10.1, 细节请参考[导出ONNX模型教程](../../deploy/EXPORT_ONNX_MODEL.md)

```shell
pip install onnx
pip install paddle2onnx
```

- 转换模型:

```shell
G
Guanghua Yu 已提交
177
paddle2onnx --model_dir output_inference/picodet_s_320_coco_lcnet/ \
G
Guanghua Yu 已提交
178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219
            --model_filename model.pdmodel  \
            --params_filename model.pdiparams \
            --opset_version 11 \
            --save_file picodet_s_320_coco.onnx
```

- 简化ONNX模型: 使用`onnx-simplifier`库来简化ONNX模型。

  - 安装 onnx-simplifier >= 0.3.6:
  ```shell
  pip install onnx-simplifier
  ```
  - 简化ONNX模型:
  ```shell
  python -m onnxsim picodet_s_320_coco.onnx picodet_s_processed.onnx
  ```

</details>

- 部署用的模型

| 模型     | 输入尺寸 | ONNX  | Paddle Lite(fp32) | Paddle Lite(fp16) |
| :-------- | :--------: | :---------------------: | :----------------: | :----------------: |
| PicoDet-S |  320*320   | [model](https://paddledet.bj.bcebos.com/deploy/third_engine/picodet_s_320_coco.onnx) | [model](https://paddledet.bj.bcebos.com/deploy/paddlelite/picodet_s_320.tar) | [model](https://paddledet.bj.bcebos.com/deploy/paddlelite/picodet_s_320_fp16.tar) |
| PicoDet-S |  416*416   |  [model](https://paddledet.bj.bcebos.com/deploy/third_engine/picodet_s_416_coco.onnx) | [model](https://paddledet.bj.bcebos.com/deploy/paddlelite/picodet_s_416.tar) | [model](https://paddledet.bj.bcebos.com/deploy/paddlelite/picodet_s_416_fp16.tar) |
| PicoDet-M |  320*320   | [model](https://paddledet.bj.bcebos.com/deploy/third_engine/picodet_m_320_coco.onnx) | [model](https://paddledet.bj.bcebos.com/deploy/paddlelite/picodet_m_320.tar) | [model](https://paddledet.bj.bcebos.com/deploy/paddlelite/picodet_m_320_fp16.tar) |
| PicoDet-M |  416*416   | [model](https://paddledet.bj.bcebos.com/deploy/third_engine/picodet_m_416_coco.onnx) | [model](https://paddledet.bj.bcebos.com/deploy/paddlelite/picodet_m_416.tar) | [model](https://paddledet.bj.bcebos.com/deploy/paddlelite/picodet_m_416_fp16.tar) |
| PicoDet-L |  320*320   | [model](https://paddledet.bj.bcebos.com/deploy/third_engine/picodet_l_320_coco.onnx) | [model](https://paddledet.bj.bcebos.com/deploy/paddlelite/picodet_l_320.tar) | [model](https://paddledet.bj.bcebos.com/deploy/paddlelite/picodet_l_320_fp16.tar) |
| PicoDet-L |  416*416   | [model](https://paddledet.bj.bcebos.com/deploy/third_engine/picodet_l_416_coco.onnx) | [model](https://paddledet.bj.bcebos.com/deploy/paddlelite/picodet_l_416.tar) | [model](https://paddledet.bj.bcebos.com/deploy/paddlelite/picodet_l_416_fp16.tar) |
| PicoDet-L |  640*640   | [model](https://paddledet.bj.bcebos.com/deploy/third_engine/picodet_l_640_coco.onnx) | [model](https://paddledet.bj.bcebos.com/deploy/paddlelite/picodet_l_640.tar) | [model](https://paddledet.bj.bcebos.com/deploy/paddlelite/picodet_l_640_fp16.tar) |
| PicoDet-Shufflenetv2 1x      |  416*416   | [model](https://paddledet.bj.bcebos.com/deploy/third_engine/picodet_shufflenetv2_1x_416_coco.onnx) | [model](https://paddledet.bj.bcebos.com/deploy/paddlelite/picodet_shufflenetv2_1x.tar) | [model](https://paddledet.bj.bcebos.com/deploy/paddlelite/picodet_shufflenetv2_1x_fp16.tar) |
| PicoDet-MobileNetv3-large 1x |  416*416   | [model](https://paddledet.bj.bcebos.com/deploy/third_engine/picodet_mobilenetv3_large_1x_416_coco.onnx) | [model](https://paddledet.bj.bcebos.com/deploy/paddlelite/picodet_mobilenetv3_large_1x.tar) | [model](https://paddledet.bj.bcebos.com/deploy/paddlelite/picodet_mobilenetv3_large_1x_fp16.tar) |
| PicoDet-LCNet 1.5x           |  416*416   | [model](https://paddledet.bj.bcebos.com/deploy/third_engine/picodet_lcnet_1_5x_416_coco.onnx) | [model](https://paddledet.bj.bcebos.com/deploy/paddlelite/picodet_lcnet_1_5x.tar) | [model](https://paddledet.bj.bcebos.com/deploy/paddlelite/picodet_lcnet_1_5x_fp16.tar) |


### 部署

- PaddleInference demo [Python](../../deploy/python) & [C++](../../deploy/cpp)
- [PaddleLite C++ demo](../../deploy/lite)
- [NCNN C++/Python demo](../../deploy/third_engine/demo_ncnn)
- [MNN C++/Python demo](../../deploy/third_engine/demo_mnn)
- [OpenVINO C++ demo](../../deploy/third_engine/demo_openvino)
G
Guanghua Yu 已提交
220
- [Android demo(Paddle Lite)](https://github.com/PaddlePaddle/Paddle-Lite-Demo/tree/develop/object_detection/android/app/cxx/picodet_detection_demo)
G
Guanghua Yu 已提交
221 222 223 224 225 226 227 228 229 230 231 232 233


Android demo可视化:
<div align="center">
  <img src="../../docs/images/picodet_android_demo1.jpg" height="500px" ><img src="../../docs/images/picodet_android_demo2.jpg" height="500px" ><img src="../../docs/images/picodet_android_demo3.jpg" height="500px" ><img src="../../docs/images/picodet_android_demo4.jpg" height="500px" >
</div>


## 量化

<details open>
<summary>依赖包:</summary>

G
Guanghua Yu 已提交
234 235
- PaddlePaddle >= 2.2.2
- PaddleSlim >= 2.2.1
G
Guanghua Yu 已提交
236 237 238 239

**安装:**

```shell
G
Guanghua Yu 已提交
240
pip install paddleslim==2.2.1
G
Guanghua Yu 已提交
241 242 243 244 245 246 247 248 249 250
```

</details>

<details>
<summary>量化训练 (点击展开)</summary>

开始量化训练:

```shell
G
Guanghua Yu 已提交
251
python tools/train.py -c configs/picodet/picodet_s_320_coco_lcnet.yml \
G
Guanghua Yu 已提交
252 253 254 255 256 257 258 259 260 261 262 263 264
          --slim_config configs/slim/quant/picodet_s_quant.yml --eval
```

- 更多细节请参考[slim文档](https://github.com/PaddlePaddle/PaddleDetection/tree/develop/configs/slim)

</details>

<details>
<summary>离线量化 (点击展开)</summary>

校准及导出量化模型:

```shell
G
Guanghua Yu 已提交
265
python tools/post_quant.py -c configs/picodet/picodet_s_320_coco_lcnet.yml \
G
Guanghua Yu 已提交
266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301
          --slim_config configs/slim/post_quant/picodet_s_ptq.yml
```

- 注意: 离线量化模型精度问题正在解决中.

</details>

## 非结构化剪枝

<details open>
<summary>教程:</summary>

训练及部署细节请参考[非结构化剪枝文档](https://github.com/PaddlePaddle/PaddleDetection/tree/develop/configs/picodet/pruner/README.md)

</details>

## 应用

- **行人检测:** `PicoDet-S-Pedestrian`行人检测模型请参考[PP-TinyPose](https://github.com/PaddlePaddle/PaddleDetection/tree/develop/configs/keypoint/tiny_pose#%E8%A1%8C%E4%BA%BA%E6%A3%80%E6%B5%8B%E6%A8%A1%E5%9E%8B)

- **主体检测:** `PicoDet-L-Mainbody`主体检测模型请参考[主体检测文档](./application/mainbody_detection/README.md)

## FAQ

<details>
<summary>显存爆炸(Out of memory error)</summary>

请减小配置文件中`TrainReader``batch_size`

</details>

<details>
<summary>如何迁移学习</summary>

请重新设置配置文件中的`pretrain_weights`字段,比如利用COCO上训好的模型在自己的数据上继续训练:
```yaml
G
Guanghua Yu 已提交
302
pretrain_weights: https://paddledet.bj.bcebos.com/models/picodet_l_640_coco_lcnet.pdparams
G
Guanghua Yu 已提交
303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342
```

</details>

<details>
<summary>`transpose`算子在某些硬件上耗时验证</summary>

请使用`PicoDet-LCNet`模型,`transpose`较少。

</details>


<details>
<summary>如何计算模型参数量。</summary>

可以将以下代码插入:[trainer.py](https://github.com/PaddlePaddle/PaddleDetection/blob/develop/ppdet/engine/trainer.py#L141) 来计算参数量。

```python
params = sum([
    p.numel() for n, p in self.model. named_parameters()
    if all([x not in n for x in ['_mean', '_variance']])
]) # exclude BatchNorm running status
print('params: ', params)
```

</details>

## 引用PP-PicoDet
如果需要在你的研究中使用PP-PicoDet,请通过一下方式引用我们的技术报告:
```
@misc{yu2021pppicodet,
      title={PP-PicoDet: A Better Real-Time Object Detector on Mobile Devices},
      author={Guanghua Yu and Qinyao Chang and Wenyu Lv and Chang Xu and Cheng Cui and Wei Ji and Qingqing Dang and Kaipeng Deng and Guanzhong Wang and Yuning Du and Baohua Lai and Qiwen Liu and Xiaoguang Hu and Dianhai Yu and Yanjun Ma},
      year={2021},
      eprint={2111.00902},
      archivePrefix={arXiv},
      primaryClass={cs.CV}
}

```