pybind.cc 44.4 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
2 3 4 5 6

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

7
http://www.apache.org/licenses/LICENSE-2.0
8 9 10 11 12 13

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
L
lgone2000 已提交
14
#include <Python.h>
C
chengduoZH 已提交
15 16
#include <algorithm>
#include <map>
S
sneaxiy 已提交
17
#include <memory>
C
chengduoZH 已提交
18 19 20 21 22
#include <mutex>  // NOLINT // for call_once
#include <string>
#include <unordered_map>
#include <utility>
#include <vector>
23

Y
Yi Wang 已提交
24 25 26
#include "paddle/fluid/framework/executor.h"
#include "paddle/fluid/framework/feed_fetch_method.h"
#include "paddle/fluid/framework/framework.pb.h"
27
#include "paddle/fluid/framework/ir/pass_builder.h"
Y
Yi Wang 已提交
28 29 30
#include "paddle/fluid/framework/lod_rank_table.h"
#include "paddle/fluid/framework/lod_tensor.h"
#include "paddle/fluid/framework/lod_tensor_array.h"
31
#include "paddle/fluid/framework/op_registry.h"
Y
Yu Yang 已提交
32
#include "paddle/fluid/framework/parallel_executor.h"
Y
Yi Wang 已提交
33
#include "paddle/fluid/framework/prune.h"
Y
Refine  
Yu Yang 已提交
34
#include "paddle/fluid/framework/reader.h"
S
sneaxiy 已提交
35
#include "paddle/fluid/framework/scope_pool.h"
Y
Yi Wang 已提交
36
#include "paddle/fluid/framework/selected_rows.h"
X
Xin Pan 已提交
37
#include "paddle/fluid/framework/version.h"
38
#include "paddle/fluid/imperative/layer.h"
Y
Refine  
Yu Yang 已提交
39
#include "paddle/fluid/memory/allocation/allocator_strategy.h"
D
dzhwinter 已提交
40
#include "paddle/fluid/operators/activation_op.h"
S
sneaxiy 已提交
41
#include "paddle/fluid/operators/py_func_op.h"
S
sneaxiy 已提交
42
#include "paddle/fluid/operators/reader/lod_tensor_blocking_queue.h"
Y
Yu Yang 已提交
43
#include "paddle/fluid/platform/cpu_info.h"
Y
Yi Wang 已提交
44
#include "paddle/fluid/platform/enforce.h"
45
#include "paddle/fluid/platform/init.h"
Y
Yi Wang 已提交
46 47
#include "paddle/fluid/platform/place.h"
#include "paddle/fluid/platform/profiler.h"
W
Wang Guibao 已提交
48
#include "paddle/fluid/pybind/async_executor_py.h"
Y
Yi Wang 已提交
49 50
#include "paddle/fluid/pybind/const_value.h"
#include "paddle/fluid/pybind/exception.h"
51
#include "paddle/fluid/pybind/imperative.h"
52 53
#include "paddle/fluid/pybind/protobuf.h"
#include "paddle/fluid/pybind/pybind.h"  // NOLINT
Y
Yu Yang 已提交
54
#include "paddle/fluid/pybind/recordio.h"
Y
Yi Wang 已提交
55
#include "paddle/fluid/pybind/tensor_py.h"
Y
Yu Yang 已提交
56

57
#include "paddle/fluid/string/to_string.h"
58

D
Dong Zhihong 已提交
59
#ifdef PADDLE_WITH_CUDA
P
peizhilin 已提交
60
#ifndef _WIN32
Y
Yi Wang 已提交
61
#include "paddle/fluid/operators/nccl/nccl_gpu_common.h"
P
peizhilin 已提交
62
#endif
Y
Yi Wang 已提交
63 64
#include "paddle/fluid/platform/cuda_profiler.h"
#include "paddle/fluid/platform/gpu_info.h"
D
Dong Zhihong 已提交
65 66
#endif

M
minqiyang 已提交
67 68
#include "pybind11/stl.h"

69 70 71 72
DEFINE_bool(reader_queue_speed_test_mode, false,
            "If set true, the queue.pop will only get data from queue but not "
            "remove the data from queue for speed testing");

Q
Qiao Longfei 已提交
73 74 75
// disable auto conversion to list in Python
PYBIND11_MAKE_OPAQUE(paddle::framework::LoDTensorArray);

76
namespace paddle {
77
namespace pybind {
78
bool IsCompiledWithCUDA() {
79
#ifndef PADDLE_WITH_CUDA
Q
qijun 已提交
80 81 82 83 84 85
  return false;
#else
  return true;
#endif
}

86
bool IsCompiledWithBrpc() {
87
#ifndef PADDLE_WITH_DISTRIBUTE
88 89
  return false;
#endif
90 91 92 93 94 95

#ifdef PADDLE_WITH_GRPC
  return false;
#endif

  return true;
96 97
}

Y
update  
Yancey1989 已提交
98
bool IsCompiledWithDIST() {
Y
Yancey1989 已提交
99
#ifdef PADDLE_WITH_DISTRIBUTE
Y
update  
Yancey1989 已提交
100 101 102 103 104 105
  return true;
#else
  return false;
#endif
}

106
PYBIND11_MODULE(core, m) {
Y
Yu Yang 已提交
107 108 109
  // Not used, just make sure cpu_info.cc is linked.
  paddle::platform::CpuTotalPhysicalMemory();

Y
Refine  
Yu Yang 已提交
110
  paddle::memory::allocation::UseAllocatorStrategyGFlag();
111
  m.doc() = "C++ core of PaddlePaddle";
112

113 114 115 116
  // using framework in this function. Since it is inside a function, it will
  // not cause namespace pollution.
  using namespace paddle::framework;  // NOLINT

117
  BindException(&m);
Y
Yu Yang 已提交
118

S
sneaxiy 已提交
119
  m.def(
S
sneaxiy 已提交
120
      "_append_python_callable_object_and_return_id",
S
sneaxiy 已提交
121 122 123 124
      [](py::object py_obj) -> size_t {
        return paddle::operators::AppendPythonCallableObjectAndReturnId(py_obj);
      });

S
sneaxiy 已提交
125 126 127
  m.add_object("_cleanup",
               py::capsule([]() { ScopePool::Instance().Clear(); }));

M
minqiyang 已提交
128 129
  py::class_<imperative::VarBase, std::shared_ptr<imperative::VarBase>>(
      m, "VarBase", R"DOC()DOC")
130 131
      // .def(py::init<>())
      .def(py::init<bool>(), py::arg("stop_gradient") = false)
132
      .def("_run_backward",
X
Xin Pan 已提交
133
           [](imperative::VarBase &self) { self.RunBackward(); })
M
minqiyang 已提交
134
      .def("_grad_name", &imperative::VarBase::GradName)
135
      .def("_grad", &imperative::VarBase::Grad)
M
minqiyang 已提交
136 137 138 139 140 141
      .def_property("grad_value",
                    [](const imperative::VarBase &self) { return self.grads_; },
                    [](imperative::VarBase &self, framework::Variable *grad) {
                      self.grads_ = grad;
                    },
                    py::return_value_policy::reference)
M
minqiyang 已提交
142 143 144 145 146 147
      .def_property("value",
                    [](const imperative::VarBase &self) { return self.var_; },
                    [](imperative::VarBase &self, framework::Variable *var) {
                      self.var_ = var;
                    },
                    py::return_value_policy::reference)
148 149 150 151 152 153
      .def_property(
          "desc",
          [](const imperative::VarBase &self) { return self.var_desc_; },
          [](imperative::VarBase &self, framework::VarDesc *var_desc) {
            self.var_desc_ = var_desc;
          },
154 155 156 157 158 159
          py::return_value_policy::reference)
      .def_property(
          "stop_gradient",
          [](const imperative::VarBase &self) { return self.stop_gradient_; },
          [](imperative::VarBase &self, bool stop_gradient) {
            self.stop_gradient_ = stop_gradient;
160
          });
161

162
  py::class_<imperative::OpBase, PyOpBase>(m, "OpBase", R"DOC()DOC")
163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182
      .def(py::init<>())
      .def_property(
          "desc", [](const imperative::OpBase &self) { return self.op_desc_; },
          [](imperative::OpBase &self, framework::OpDesc *op_desc) {
            if (op_desc) {
              self.op_desc_ = op_desc;
            }
          },
          py::return_value_policy::reference);

  py::class_<imperative::Layer, PyLayer /* <--- trampoline*/> layer(m, "Layer");
  layer.def(py::init<>())
      .def("forward",
           [](imperative::Layer &self,
              const std::vector<imperative::VarBase> &inputs) {
             return self.Forward(inputs);
           })
      .def("backward", &imperative::Layer::Backward);
  BindTracer(&m);

183 184 185
  py::class_<Tensor>(m, "Tensor", py::buffer_protocol())
      .def_buffer(
          [](Tensor &self) -> py::buffer_info { return CastToPyBuffer(self); })
Y
yuyang18 已提交
186
      .def("_get_dims",
187
           [](const Tensor &self) { return vectorize(self.dims()); })
Y
yuyang18 已提交
188
      .def("_set_dims",
Q
qijun 已提交
189
           [](Tensor &self, const std::vector<int64_t> &dim) {
Y
Yu Yang 已提交
190
             self.Resize(make_ddim(dim));
Y
Yu Yang 已提交
191
           })
Y
yuyang18 已提交
192
      .def("_set_layout",
D
dzhwinter 已提交
193 194 195
           [](Tensor &self, const std::string &layout) {
             self.set_layout(StringToDataLayout(layout));
           })
Y
yuyang18 已提交
196
      .def("_alloc_float",
D
dzhwinter 已提交
197
           [](Tensor &self, paddle::platform::CUDAPlace &place) {
Q
qijun 已提交
198
             self.mutable_data<float>(place);
Y
Yu Yang 已提交
199
           })
Y
yuyang18 已提交
200
      .def("_alloc_float",
Y
Yu Yang 已提交
201
           [](Tensor &self, paddle::platform::CPUPlace &place) {
Q
qijun 已提交
202
             self.mutable_data<float>(place);
Y
Yu Yang 已提交
203
           })
Y
yuyang18 已提交
204
      .def("_alloc_int",
Y
Yu Yang 已提交
205
           [](Tensor &self, paddle::platform::CPUPlace &place) {
Q
qijun 已提交
206
             self.mutable_data<int>(place);
Y
Yu Yang 已提交
207
           })
Y
yuyang18 已提交
208
      .def("_alloc_int",
D
dzhwinter 已提交
209
           [](Tensor &self, paddle::platform::CUDAPlace &place) {
Q
qijun 已提交
210
             self.mutable_data<int>(place);
Q
qijun 已提交
211
           })
Y
yuyang18 已提交
212
      .def("_alloc_int",
C
chengduoZH 已提交
213 214 215
           [](Tensor &self, paddle::platform::CUDAPinnedPlace &place) {
             self.mutable_data<int>(place);
           })
Y
yuyang18 已提交
216
      .def("_alloc_float",
C
chengduoZH 已提交
217 218 219
           [](Tensor &self, paddle::platform::CUDAPinnedPlace &place) {
             self.mutable_data<float>(place);
           })
Y
Yu Yang 已提交
220 221
      .def("set", PyCPUTensorSetFromArray<float>)
      .def("set", PyCPUTensorSetFromArray<int>)
222
      .def("set", PyCPUTensorSetFromArray<double>)
223
      .def("set", PyCPUTensorSetFromArray<int64_t>)
Y
Yu Yang 已提交
224
      .def("set", PyCPUTensorSetFromArray<bool>)
225
      .def("set", PyCPUTensorSetFromArray<uint16_t>)
F
fengjiayi 已提交
226
      .def("set", PyCPUTensorSetFromArray<uint8_t>)
Q
qingqing01 已提交
227
      .def("set", PyCPUTensorSetFromArray<int8_t>)
228
#ifdef PADDLE_WITH_CUDA
Y
Yu Yang 已提交
229 230
      .def("set", PyCUDATensorSetFromArray<float>)
      .def("set", PyCUDATensorSetFromArray<int>)
231
      .def("set", PyCUDATensorSetFromArray<double>)
232
      .def("set", PyCUDATensorSetFromArray<int64_t>)
Y
Yu Yang 已提交
233
      .def("set", PyCUDATensorSetFromArray<bool>)
234
      .def("set", PyCUDATensorSetFromArray<uint16_t>)
F
fengjiayi 已提交
235
      .def("set", PyCUDATensorSetFromArray<uint8_t>)
Q
qingqing01 已提交
236
      .def("set", PyCUDATensorSetFromArray<int8_t>)
C
chengduoZH 已提交
237 238 239 240 241 242
      .def("set", PyCUDAPinnedTensorSetFromArray<float>)
      .def("set", PyCUDAPinnedTensorSetFromArray<int>)
      .def("set", PyCUDAPinnedTensorSetFromArray<double>)
      .def("set", PyCUDAPinnedTensorSetFromArray<int64_t>)
      .def("set", PyCUDAPinnedTensorSetFromArray<bool>)
      .def("set", PyCUDAPinnedTensorSetFromArray<uint16_t>)
F
fengjiayi 已提交
243
      .def("set", PyCUDAPinnedTensorSetFromArray<uint8_t>)
Q
qingqing01 已提交
244
      .def("set", PyCUDAPinnedTensorSetFromArray<int8_t>)
Q
qijun 已提交
245
#endif
246
      .def("shape", [](Tensor &self) { return vectorize(self.dims()); })
Y
yuyang18 已提交
247 248 249 250
      .def("_set_float_element", TensorSetElement<float>)
      .def("_get_float_element", TensorGetElement<float>)
      .def("_set_double_element", TensorSetElement<double>)
      .def("_get_double_element", TensorGetElement<double>)
Y
Yu Yang 已提交
251
      .def("_dtype", [](Tensor &self) { return self.type(); });
Y
Yu Yang 已提交
252

X
Xin Pan 已提交
253 254 255 256 257 258 259 260 261 262 263 264 265
  py::class_<LoDTensor, Tensor>(m, "LoDTensor", R"DOC(
    LoDTensor is a Tensor with optional LoD information.

    np.array(lod_tensor) can convert LoDTensor to numpy array.
    lod_tensor.lod() can retrieve the LoD information.

    LoD is short for Level of Details and is usually used for varied sequence
    length. You can skip the following comment if you don't need optional LoD.

  For example:
     A LoDTensor X can look like the example below. It contains 2 sequences.
     The first has length 2 and the second has length 3, as described by x.lod.

X
fix doc  
Xin Pan 已提交
266
     The first tensor dimension 5=2+3 is calculated from LoD if it's available.
X
Xin Pan 已提交
267
     It means the total number of sequence element. In X, each element has 2
X
fix doc  
Xin Pan 已提交
268
     columns, hence [5, 2].
X
Xin Pan 已提交
269 270 271

      x.lod  = [[2, 3]]
      x.data = [[1, 2], [3, 4],
X
fix doc  
Xin Pan 已提交
272 273
                [5, 6], [7, 8], [9, 10]]
      x.shape = [5, 2]
X
Xin Pan 已提交
274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296

      LoD can have multiple levels (for example, a paragraph can have multiple
      sentences and a sentence can have multiple words). In the following
      LodTensor Y, the lod_level is 2. It means there are 2 sequence, the
      first sequence length is 2 (has 2 sub-sequences), the second one's
      length is 1. The first sequence's 2 sub-sequences have length 2 and 2,
      respectively. And the second sequence's 1 sub-sequence has length 3.

      y.lod = [[2 1], [2 2 3]]
      y.shape = [2+2+3, ...]

  Note:
      In above description, LoD is length-based. In Paddle internal
      implementation, lod is offset-based. Hence, internally,
      y.lod is represented as [[0, 2, 3], [0, 2, 4, 7]] (length-based
      equivlent would be [[2-0, 3-2], [2-0, 4-2, 7-4]]).

      Sometimes LoD is called recursive_sequence_length to be more
      self-explanatory. In this case, it must be length-based. Due to history
      reasons. when LoD is called lod in public API, it might be offset-based.
      Users should be careful about it.

        )DOC")
297 298
      .def_buffer(
          [](Tensor &self) -> py::buffer_info { return CastToPyBuffer(self); })
299 300 301 302 303 304 305 306 307 308 309 310 311 312
      .def("__init__",
           [](LoDTensor &instance, const std::vector<std::vector<size_t>>
                                       &recursive_sequence_lengths) {
             LoD new_lod;
             new_lod.reserve(recursive_sequence_lengths.size());
             std::copy(recursive_sequence_lengths.begin(),
                       recursive_sequence_lengths.end(),
                       std::back_inserter(new_lod));
             LoD new_offset_lod = ConvertToOffsetBasedLoD(new_lod);
             PADDLE_ENFORCE(
                 CheckLoD(new_offset_lod, -1),
                 "the provided recursive_sequence_lengths info is invalid");
             new (&instance) LoDTensor(new_offset_lod);
           })
Y
Yu Yang 已提交
313
      .def("__init__", [](LoDTensor &instance) { new (&instance) LoDTensor(); })
G
gongweibao 已提交
314 315 316 317 318
      // We implement offset based LOD in C++ while we use length based with
      // Python API. So we changed set_lod to set_recursive_sequence_lengths to
      // avoid misuse.
      // The discussion is here:
      // https://github.com/PaddlePaddle/Paddle/issues/10855
D
dangqingqing 已提交
319
      .def("set_lod",
320
           [](LoDTensor &self, const std::vector<std::vector<size_t>> &lod) {
321
             // the input lod is offset-based level-of-detail info
Y
Yu Yang 已提交
322
             LoD new_lod;
323 324
             new_lod.reserve(lod.size());
             std::copy(lod.begin(), lod.end(), std::back_inserter(new_lod));
325 326
             PADDLE_ENFORCE(CheckLoD(new_lod, vectorize(self.dims()).front()),
                            "the provided lod info is invalid");
327
             self.set_lod(new_lod);
D
dangqingqing 已提交
328
           })
329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353
      .def("set_recursive_sequence_lengths",
           [](LoDTensor &self, const std::vector<std::vector<size_t>>
                                   &recursive_sequence_lengths) {
             // the input recursive_sequence_lengths is length-based
             // level-of-detail info
             LoD new_lod;
             new_lod.reserve(recursive_sequence_lengths.size());
             std::copy(recursive_sequence_lengths.begin(),
                       recursive_sequence_lengths.end(),
                       std::back_inserter(new_lod));
             LoD new_offset_lod = ConvertToOffsetBasedLoD(new_lod);
             PADDLE_ENFORCE(
                 CheckLoD(new_offset_lod, vectorize(self.dims()).front()),
                 "the provided recursive_sequence_lengths info is invalid");
             self.set_lod(new_offset_lod);
           })
      .def("lod",
           [](LoDTensor &self) -> std::vector<std::vector<size_t>> {
             // output the offset-based lod info
             LoD lod = self.lod();
             std::vector<std::vector<size_t>> new_lod;
             new_lod.reserve(lod.size());
             std::copy(lod.begin(), lod.end(), std::back_inserter(new_lod));
             return new_lod;
           })
G
gongweibao 已提交
354
      // Set above comments of set_lod.
355 356 357 358 359 360 361 362 363 364 365 366 367
      .def("recursive_sequence_lengths",
           [](LoDTensor &self) -> std::vector<std::vector<size_t>> {
             // output the length-based lod info
             LoD lod = ConvertToLengthBasedLoD(self.lod());
             std::vector<std::vector<size_t>> new_lod;
             new_lod.reserve(lod.size());
             std::copy(lod.begin(), lod.end(), std::back_inserter(new_lod));
             return new_lod;
           })
      .def("has_valid_recursive_sequence_lengths", [](LoDTensor &self) -> bool {
        // Check that the lod info is valid and match the outermost
        // dimension of the LoDTensor data
        return CheckLoD(self.lod(), vectorize(self.dims()).front());
D
dangqingqing 已提交
368 369
      });

Q
qijun 已提交
370 371 372 373 374 375 376 377 378 379 380
  py::class_<SelectedRows>(m, "SelectedRows")
      .def("__init__",
           [](SelectedRows &instance) { new (&instance) SelectedRows(); })
      .def("__init__",
           [](SelectedRows &instance, const std::vector<int64_t> rows,
              const int64_t &height) {
             new (&instance) SelectedRows(rows, height);
           })
      .def("get_tensor",
           [](SelectedRows &self) { return self.mutable_value(); },
           py::return_value_policy::reference)
381 382
      .def("numel",
           [](SelectedRows &self) -> int64_t { return self.value().numel(); })
Q
qijun 已提交
383 384
      .def("set_height", &SelectedRows::set_height)
      .def("height", &SelectedRows::height)
Q
qijun 已提交
385 386 387 388 389 390 391 392 393
      .def("set_rows",
           [](SelectedRows &self, std::vector<int64_t> rows) {
#ifndef PADDLE_WITH_CUDA
             self.set_rows(rows);
#else
        Vector<int64_t> new_rows(rows);
        self.set_rows(new_rows);
#endif
           })
394
      .def("sync_index", [](SelectedRows &instance) { instance.SyncIndex(); })
395
      .def("rows", [](SelectedRows &self) {
396 397 398 399 400
        auto rows = self.rows();
        std::vector<int64_t> new_rows;
        new_rows.reserve(rows.size());
        std::copy(rows.begin(), rows.end(), std::back_inserter(new_rows));
        return new_rows;
401
      });
Q
qijun 已提交
402

403
  py::class_<Variable>(m, "Variable", R"DOC(Variable Class.
404 405 406

All parameter, weight, gradient are variables in Paddle.
)DOC")
407
      .def("is_int", [](const Variable &var) { return var.IsType<int>(); })
408
      .def("set_int",
409 410
           [](Variable &var, int val) -> void { *var.GetMutable<int>() = val; })
      .def("get_int", [](const Variable &var) -> int { return var.Get<int>(); })
411 412 413 414 415 416 417
      .def("is_float", [](const Variable &var) { return var.IsType<float>(); })
      .def("set_float",
           [](Variable &var, float val) -> void {
             *var.GetMutable<float>() = val;
           })
      .def("get_float",
           [](const Variable &var) -> float { return var.Get<float>(); })
Y
Yu Yang 已提交
418
      .def("get_tensor",
419 420
           [](Variable &self) -> LoDTensor * {
             return self.GetMutable<LoDTensor>();
D
dangqingqing 已提交
421 422
           },
           py::return_value_policy::reference)
Y
Yu Yang 已提交
423 424 425
      .def("get_lod_rank_table",
           [](Variable &self) { return self.GetMutable<LoDRankTable>(); },
           py::return_value_policy::reference)
Q
qijun 已提交
426 427 428 429 430
      .def("get_selected_rows",
           [](Variable &self) -> SelectedRows * {
             return self.GetMutable<SelectedRows>();
           },
           py::return_value_policy::reference)
Y
Yu Yang 已提交
431 432 433
      .def("get_lod_tensor_array",
           [](Variable &self) { return self.GetMutable<LoDTensorArray>(); },
           py::return_value_policy::reference)
P
peizhilin 已提交
434
#if (defined(PADDLE_WITH_CUDA) && !defined(_WIN32))
D
Dong Zhihong 已提交
435 436 437 438 439
      .def("get_communicator",
           [](Variable &self) -> platform::Communicator * {
             return self.GetMutable<platform::Communicator>();
           },
           py::return_value_policy::reference)
Y
Yu Yang 已提交
440
#endif
Y
Refine  
Yu Yang 已提交
441 442 443 444 445
      .def("get_reader",
           [](Variable &self) -> framework::ReaderHolder * {
             PADDLE_ENFORCE(self.IsType<framework::ReaderHolder>());
             return self.GetMutable<framework::ReaderHolder>();
           },
W
wopeizl 已提交
446
           py::return_value_policy::reference);
447

Y
Refine  
Yu Yang 已提交
448
  py::class_<framework::ReaderHolder>(m, "Reader", "")
449
      .def("reset", &framework::ReaderHolder::ResetAll);
Y
Refine  
Yu Yang 已提交
450

S
sneaxiy 已提交
451 452 453 454
  using LoDTensorBlockingQueue =
      ::paddle::operators::reader::LoDTensorBlockingQueue;
  using LoDTensorBlockingQueueHolder =
      ::paddle::operators::reader::LoDTensorBlockingQueueHolder;
S
sneaxiy 已提交
455 456
  py::class_<LoDTensorBlockingQueue, std::shared_ptr<LoDTensorBlockingQueue>>(
      m, "LoDTensorBlockingQueue", "")
S
sneaxiy 已提交
457
      .def("push",
S
sneaxiy 已提交
458
           [](LoDTensorBlockingQueue &self,
S
sneaxiy 已提交
459
              const std::vector<framework::LoDTensor> &lod_tensor_vec) {
S
sneaxiy 已提交
460
             pybind11::gil_scoped_release release;
S
sneaxiy 已提交
461
             return self.Push(lod_tensor_vec);
S
sneaxiy 已提交
462
           })
S
sneaxiy 已提交
463 464 465 466
      .def("size", &LoDTensorBlockingQueue::Size)
      .def("capacity", &LoDTensorBlockingQueue::Cap)
      .def("close", &LoDTensorBlockingQueue::Close)
      .def("is_closed", &LoDTensorBlockingQueue::IsClosed);
S
sneaxiy 已提交
467

S
sneaxiy 已提交
468
  m.def("init_lod_tensor_blocking_queue",
S
sneaxiy 已提交
469
        [](Variable &var, size_t capacity,
S
sneaxiy 已提交
470
           const std::vector<std::vector<int64_t>> &shapes)
S
sneaxiy 已提交
471
            -> std::shared_ptr<LoDTensorBlockingQueue> {
S
sneaxiy 已提交
472 473 474 475 476 477
              std::vector<DDim> dims(shapes.size());
              std::transform(shapes.begin(), shapes.end(), dims.begin(),
                             [](const std::vector<int64_t> &shape) {
                               return make_ddim(shape);
                             });
              auto *holder = var.GetMutable<LoDTensorBlockingQueueHolder>();
478 479
              holder->InitOnce(capacity, dims,
                               FLAGS_reader_queue_speed_test_mode);
S
sneaxiy 已提交
480
              return holder->GetQueue();
S
sneaxiy 已提交
481
            },
S
sneaxiy 已提交
482
        py::return_value_policy::copy);
S
sneaxiy 已提交
483

S
sneaxiy 已提交
484
  py::class_<Scope>(m, "_Scope", R"DOC(
Q
Qiao Longfei 已提交
485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503
    Scope is an association of a name to Variable. All variables belong to Scope.

    Variables in a parent scope can be retrieved from local scope.

    You need to specify a scope to run a Net, i.e., `exe.Run(&scope)`.
    One net can run in different scopes and update different variable in the
    scope.

    You can create var in a scope and get it from the scope.

    Examples:
        .. code-block:: python

          # create tensor from a scope and set value to it.
          param = scope.var('Param').get_tensor()
          param_array = np.full((height, row_numel), 5.0).astype("float32")
          param.set(param_array, place)

        )DOC")
S
sneaxiy 已提交
504 505
      .def("_remove_from_pool",
           [](Scope &self) { ScopePool::Instance().Remove(&self); })
D
dongzhihong 已提交
506
      .def("var",
507
           [](Scope &self, const std::string &name) -> Variable * {
D
dongzhihong 已提交
508
             return self.Var(name);
Y
Yu Yang 已提交
509
           },
510
           py::return_value_policy::reference)
511
      .def("find_var", &Scope::FindVar, py::return_value_policy::reference)
512
      .def("new_scope", [](Scope &self) -> Scope * { return &self.NewScope(); },
513
           py::return_value_policy::reference)
Y
Yu Yang 已提交
514
      .def("drop_kids", &Scope::DropKids);
515

S
sneaxiy 已提交
516 517 518 519 520 521 522 523
  m.def("Scope",
        []() -> Scope * {
          auto *s = new Scope();
          ScopePool::Instance().Insert(std::unique_ptr<Scope>(s));
          return s;
        },
        py::return_value_policy::reference);

Y
Yu Yang 已提交
524 525
  //! @note: Be careful! PyBind will return std::string as an unicode, not
  //! Python str. If you want a str object, you should cast them in Python.
Y
Yu Yang 已提交
526 527
  m.def("get_all_op_protos", []() -> std::vector<py::bytes> {
    std::vector<py::bytes> ret_values;
528 529 530 531 532 533 534 535 536 537
    for (auto &iter : OpInfoMap::Instance().map()) {
      auto &info = iter.second;
      if (info.HasOpProtoAndChecker()) {
        std::string str;
        PADDLE_ENFORCE(
            info.Proto().SerializeToString(&str),
            "Serialize OpProto Error. This could be a bug of Paddle.");
        ret_values.emplace_back(str);
      }
    }
Y
Yu Yang 已提交
538 539
    return ret_values;
  });
540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555
  m.def(
      "get_grad_op_desc", [](const OpDesc &op_desc,
                             const std::unordered_set<std::string> &no_grad_set,
                             const std::vector<BlockDesc *> &grad_sub_block) {
        std::unordered_map<std::string, std::string> grad_to_var;
        std::vector<std::unique_ptr<OpDesc>> grad_op_descs =
            framework::OpInfoMap::Instance()
                .Get(op_desc.Type())
                .GradOpMaker()(op_desc, no_grad_set, &grad_to_var,
                               grad_sub_block);
        std::vector<OpDesc *> grad_op_desc_ptrs(grad_op_descs.size());
        std::transform(grad_op_descs.begin(), grad_op_descs.end(),
                       grad_op_desc_ptrs.begin(),
                       [](std::unique_ptr<OpDesc> &p) { return p.release(); });
        return std::make_pair(grad_op_desc_ptrs, grad_to_var);
      });
Y
Yu Yang 已提交
556
  m.def("prune", [](const ProgramDesc &origin,
557
                    const std::vector<std::array<size_t, 2>> &targets) {
Y
Yu Yang 已提交
558
    ProgramDesc prog_with_targets(origin);
559
    for (const auto &t : targets) {
560
      prog_with_targets.MutableBlock(t[0])->Op(t[1])->SetIsTarget(true);
561
    }
562
    proto::ProgramDesc pruned_desc;
563
    Prune(*prog_with_targets.Proto(), &pruned_desc);
Y
Yu Yang 已提交
564
    return new ProgramDesc(pruned_desc);
565
  });
566 567 568 569
  m.def("empty_var_name",
        []() { return std::string(framework::kEmptyVarName); });
  m.def("grad_var_suffix",
        []() { return std::string(framework::kGradVarSuffix); });
570 571 572
  m.def_submodule(
       "var_names",
       "The module will return special predefined variable name in Paddle")
Y
Yi Wang 已提交
573 574
      .def("empty", []() { return kEmptyVarName; })
      .def("temp", []() { return kTempVarName; });
Q
qijun 已提交
575
  // clang-format off
Y
Yu Yang 已提交
576
  py::class_<paddle::platform::DeviceContext>(m, "DeviceContext")
Q
qijun 已提交
577 578
      .def_static("create",
                  [](paddle::platform::CPUPlace& place)
Q
qijun 已提交
579
                      -> paddle::platform::DeviceContext* {
Q
qijun 已提交
580 581 582
                    return new paddle::platform::CPUDeviceContext();
                  })
      .def_static("create",
D
dzhwinter 已提交
583
                  [](paddle::platform::CUDAPlace& place)
Q
qijun 已提交
584
                      -> paddle::platform::DeviceContext* {
585
#ifndef PADDLE_WITH_CUDA
D
dzhwinter 已提交
586
                    PADDLE_THROW("CUDAPlace is not supported in CPU device.");
Q
qijun 已提交
587
#else
Q
qijun 已提交
588
                    return new paddle::platform::CUDADeviceContext(place);
Q
qijun 已提交
589
#endif
C
chengduoZH 已提交
590 591 592 593 594 595 596 597 598 599 600
                  })
          .def_static("create",
                [](paddle::platform::CUDAPinnedPlace& place)
                        -> paddle::platform::DeviceContext* {
#ifndef PADDLE_WITH_CUDA
                  PADDLE_THROW(
                        "CUDAPinnedPlace is not supported in CPU device.");
#else
                  return new paddle::platform::CUDAPinnedDeviceContext(place);
#endif
                });;
D
Dong Zhihong 已提交
601
// clang-format on
P
peizhilin 已提交
602
#if (defined(PADDLE_WITH_CUDA) && !defined(_WIN32))
D
Dong Zhihong 已提交
603 604
  py::class_<platform::Communicator>(m, "Communicator").def(py::init<>());
#endif
D
dzhwinter 已提交
605
  py::class_<platform::CUDAPlace>(m, "CUDAPlace")
606
      .def(py::init<int>())
D
dzhwinter 已提交
607
      .def("__str__", string::to_string<const platform::CUDAPlace &>);
Q
qijun 已提交
608

609 610 611
  py::class_<paddle::platform::CPUPlace>(m, "CPUPlace")
      .def(py::init<>())
      .def("__str__", string::to_string<const platform::CPUPlace &>);
Y
Yu Yang 已提交
612

C
chengduoZH 已提交
613 614 615 616
  py::class_<paddle::platform::CUDAPinnedPlace>(m, "CUDAPinnedPlace")
      .def(py::init<>())
      .def("__str__", string::to_string<const platform::CUDAPinnedPlace &>);

Y
Yu Yang 已提交
617 618 619 620 621 622 623
  py::class_<platform::Place>(m, "Place")
      .def(py::init<>())
      .def("set_place",
           [](platform::Place &self, const platform::CPUPlace &cpu_place) {
             self = cpu_place;
           })
      .def("set_place",
D
dzhwinter 已提交
624
           [](platform::Place &self, const platform::CUDAPlace &gpu_place) {
Y
Yu Yang 已提交
625
             self = gpu_place;
C
chengduoZH 已提交
626 627
           })
      .def("set_place", [](platform::Place &self,
C
chengduoZH 已提交
628 629
                           const platform::CUDAPinnedPlace &cuda_pinned_place) {
        self = cuda_pinned_place;
C
chengduoZH 已提交
630
      });
Y
Yu Yang 已提交
631

Y
Yu Yang 已提交
632 633 634
  py::class_<OperatorBase>(m, "Operator")
      .def_static("create",
                  [](py::bytes protobin) {
635
                    proto::OpDesc desc;
Y
Yu Yang 已提交
636 637 638 639 640
                    PADDLE_ENFORCE(desc.ParsePartialFromString(protobin),
                                   "Cannot parse user input to OpDesc");
                    PADDLE_ENFORCE(desc.IsInitialized(),
                                   "User OpDesc is not initialized, reason %s",
                                   desc.InitializationErrorString());
641
                    return OpRegistry::CreateOp(desc);
Y
Yu Yang 已提交
642
                  })
643
      .def("run",
644
           [](OperatorBase &self, const Scope &scope,
D
dzhwinter 已提交
645 646 647
              const platform::CPUPlace &place) { self.Run(scope, place); })
      .def("run",
           [](OperatorBase &self, const Scope &scope,
D
dzhwinter 已提交
648
              const platform::CUDAPlace &place) { self.Run(scope, place); })
C
chengduoZH 已提交
649 650 651 652 653
      .def("run",
           [](OperatorBase &self, const Scope &scope,
              const platform::CUDAPinnedPlace &place) {
             self.Run(scope, place);
           })
Y
Yu Yang 已提交
654 655 656 657 658 659 660
      .def("type",
           [](const OperatorBase &op) -> std::string { return op.Type(); })
      .def("outputs",
           [](const OperatorBase &op)
               -> std::map<std::string, std::vector<std::string>> {
                 return op.Outputs();
               })
Q
qijun 已提交
661 662
      .def("output_vars",
           [](const OperatorBase &op) { return op.OutputVars(true); })
Y
Yu Yang 已提交
663
      .def("inputs", [](const OperatorBase &op) { return op.Inputs(); })
Q
qijun 已提交
664
      .def("input_vars", [](const OperatorBase &op) { return op.InputVars(); })
Y
Yu Yang 已提交
665 666 667 668
      .def("__str__", &OperatorBase::DebugString)
      .def("no_intermediate_outputs",
           [](const OperatorBase &op) { return op.OutputVars(false); })
      .def("support_gpu", &OperatorBase::SupportGPU);
Y
Yu Yang 已提交
669

F
fengjiayi 已提交
670
  py::class_<framework::Executor>(m, "Executor")
D
dzhwinter 已提交
671
      .def(py::init<const platform::Place &>())
Y
Yancey1989 已提交
672
      .def("close", &Executor::Close)
S
sneaxiy 已提交
673 674 675 676 677
      .def("run", [](Executor &self, const ProgramDesc &prog, Scope *scope,
                     int block_id, bool create_local_scope, bool create_vars) {
        pybind11::gil_scoped_release release;
        self.Run(prog, scope, block_id, create_local_scope, create_vars);
      });
S
sneaxiy 已提交
678

D
dzhwinter 已提交
679
  m.def("init_gflags", framework::InitGflags);
Y
Yang Yu 已提交
680
  m.def("init_glog", framework::InitGLOG);
X
Xin Pan 已提交
681 682
  m.def("init_devices",
        [](bool init_p2p) { framework::InitDevices(init_p2p); });
683

684
  m.def("is_compiled_with_cuda", IsCompiledWithCUDA);
685
  m.def("is_compiled_with_brpc", IsCompiledWithBrpc);
Y
update  
Yancey1989 已提交
686
  m.def("is_compiled_with_dist", IsCompiledWithDIST);
687 688 689 690 691 692
#ifdef PADDLE_WITH_CUDA
  m.def("is_float16_supported", [](const platform::CUDAPlace &place) -> bool {
    // Only GPUs with Compute Capability >= 53 support float16
    return platform::GetCUDAComputeCapability(place.device) >= 53;
  });
#endif
693

694
  m.def("set_feed_variable", framework::SetFeedVariable);
Q
qijun 已提交
695
  m.def("get_fetch_variable", framework::GetFetchVariable);
696
  m.def("get_variable_tensor", framework::GetVariableTensor);
Q
qijun 已提交
697

X
Xin Pan 已提交
698 699
  m.def("_is_program_version_supported", IsProgramVersionSupported);

700 701 702 703 704
  BindProgramDesc(&m);
  BindBlockDesc(&m);
  BindVarDsec(&m);
  BindOpDesc(&m);
  BindConstValue(&m);
Y
Yu Yang 已提交
705

Y
Yu Yang 已提交
706 707 708 709 710 711 712 713 714
  py::class_<framework::LoDRankTable>(m, "LodRankTable")
      .def("items", [](framework::LoDRankTable &table) {
        std::vector<std::pair<size_t, size_t>> res;
        for (auto &item : table.items()) {
          res.push_back({item.index, item.length});
        }
        return res;
      });

Y
Yu Yang 已提交
715
  py::class_<LoDTensorArray>(m, "LoDTensorArray")
S
sneaxiy 已提交
716 717
      .def("__init__",
           [](LoDTensorArray &instance) { new (&instance) LoDTensorArray(); })
Y
Yu Yang 已提交
718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733
      .def("__getitem__",
           [](LoDTensorArray &self, size_t i) { return &self.at(i); },
           py::return_value_policy::reference)
      .def("__len__", [](LoDTensorArray &self) { return self.size(); })
      .def("__setitem__",
           [](LoDTensorArray &self, size_t i, const LoDTensor &t) {
             PADDLE_ENFORCE_LT(i, self.size());
             self[i].ShareDataWith(t);
             self[i].set_lod(t.lod());
           })
      .def("append", [](LoDTensorArray &self, const LoDTensor &t) {
        self.emplace_back();
        self.back().ShareDataWith(t);
        self.back().set_lod(t.lod());
      });

D
dzhwinter 已提交
734 735 736
  m.def("IsInplace",
        [](std::string op) -> bool { return operators::IsInplace(op); });

Y
Yu Yang 已提交
737
  m.def("op_support_gpu", OpSupportGPU);
D
Dong Zhihong 已提交
738
#ifdef PADDLE_WITH_CUDA
D
Dong Zhihong 已提交
739
  m.def("get_cuda_device_count", platform::GetCUDADeviceCount);
D
dangqingqing 已提交
740

P
peizhilin 已提交
741
#ifndef _WIN32
D
dangqingqing 已提交
742 743 744
  m.def("nvprof_init", platform::CudaProfilerInit);
  m.def("nvprof_start", platform::CudaProfilerStart);
  m.def("nvprof_stop", platform::CudaProfilerStop);
D
Dong Zhihong 已提交
745
#endif
P
peizhilin 已提交
746
#endif
Y
Yu Yang 已提交
747

748 749 750 751
  py::enum_<platform::ProfilerState>(m, "ProfilerState", py::arithmetic())
      .value("kDisabled", platform::ProfilerState::kDisabled)
      .value("kCPU", platform::ProfilerState::kCPU)
      .value("kCUDA", platform::ProfilerState::kCUDA)
752
      .value("kAll", platform::ProfilerState::kAll)
753 754 755 756 757 758 759 760 761 762 763 764 765
      .export_values();

  py::enum_<platform::EventSortingKey>(m, "EventSortingKey", py::arithmetic())
      .value("kDefault", platform::EventSortingKey::kDefault)
      .value("kCalls", platform::EventSortingKey::kCalls)
      .value("kTotal", platform::EventSortingKey::kTotal)
      .value("kMin", platform::EventSortingKey::kMin)
      .value("kMax", platform::EventSortingKey::kMax)
      .value("kAve", platform::EventSortingKey::kAve)
      .export_values();

  m.def("enable_profiler", platform::EnableProfiler);
  m.def("disable_profiler", platform::DisableProfiler);
X
Xin Pan 已提交
766
  m.def("is_profiler_enabled", platform::IsProfileEnabled);
767
  m.def("reset_profiler", platform::ResetProfiler);
Y
Yu Yang 已提交
768

769 770
  py::class_<ir::Pass, std::shared_ptr<ir::Pass>> pass(m, "Pass");
  pass.def(py::init())
771 772 773 774 775
      .def(
          "set_str",
          [](ir::Pass &self, const std::string &name, const std::string &attr) {
            self.Set<std::string>(name, new std::string(attr));
          })
X
Xin Pan 已提交
776 777 778
      .def("set_int", [](ir::Pass &self, const std::string &name,
                         int val) { self.Set<const int>(name, new int(val)); })
      .def("type", &ir::Pass::Type);
779

X
fix  
Xin Pan 已提交
780 781
  py::class_<ir::PassBuilder, std::shared_ptr<ir::PassBuilder>> pb(
      m, "PassBuilder");
782 783 784 785 786 787 788 789 790 791 792 793 794 795
  pb.def(py::init())
      .def("append_pass",
           [](ir::PassBuilder &self,
              const std::string &pass_type) -> std::shared_ptr<ir::Pass> {
             return self.AppendPass(pass_type);
           })
      .def("all_passes", [](ir::PassBuilder &self) { return self.AllPasses(); })
      .def("insert_pass",
           [](ir::PassBuilder &self, size_t idx, const std::string &pass_type) {
             return self.InsertPass(idx, pass_type);
           })
      .def("remove_pass",
           [](ir::PassBuilder &self, size_t idx) { self.RemovePass(idx); });

Y
yuyang18 已提交
796
  // -- python binds for parallel executor.
Y
yuyang18 已提交
797
  py::class_<ParallelExecutor> pe(m, "ParallelExecutor");
C
chengduo 已提交
798 799 800 801
  py::class_<ExecutionStrategy> exec_strategy(pe, "ExecutionStrategy", R"DOC(
    ExecutionStrategy allows the user to more preciously control how to run
    the program in ParallelExecutor by setting the property.

C
chengduo 已提交
802 803 804 805 806 807 808 809 810 811 812
    Examples:
        .. code-block:: python

          exec_strategy = fluid.ExecutionStrategy()
          exec_strategy.num_threads = 4

          train_exe = fluid.ParallelExecutor(use_cuda=True,
                                             loss_name=loss.name,
                                             exec_strategy=exec_strategy)

          train_loss, = train_exe.run([loss.name], feed=feed_dict)
C
chengduo 已提交
813 814 815

        )DOC");

Y
yuyang18 已提交
816
  exec_strategy.def(py::init())
Y
yuyang18 已提交
817 818 819 820 821
      .def_property(
          "num_threads",
          [](const ExecutionStrategy &self) { return self.num_threads_; },
          [](ExecutionStrategy &self, size_t num_threads) {
            self.num_threads_ = num_threads;
C
chengduo 已提交
822 823 824 825 826 827 828 829 830 831
          },
          R"DOC(The type is INT, num_threads represents the size of thread pool that
            used to run the operators of the current program in ParallelExecutor.
            If :math:`num\_threads=1`, all the operators will execute one by one,
            but the order maybe difference between iterations.
            If it is not set, it will be set in ParallelExecutor according to the
            device type and device count, for GPU, :math:`num\_threads=device\_count*4`, for CPU,
            :math:`num\_threads=CPU\_NUM*4`, the explanation of:math:`CPU\_NUM` is in ParallelExecutor.
            if it is not set, ParallelExecutor will get the cpu count by calling
            `multiprocessing.cpu_count()`. Default 0.)DOC")
Y
yuyang18 已提交
832
      .def_property(
833 834 835 836
          "use_cuda",
          [](const ExecutionStrategy &self) { return self.use_cuda_; },
          [](ExecutionStrategy &self, bool use_cuda) {
            self.use_cuda_ = use_cuda;
C
chengduo 已提交
837 838 839 840
          })  // FIXME(chengduo): Doesn't add doc for 'use_cuda', use_cuda may
      // make user confuse, because ParallelExecutor has a parameter named
      // 'use_cuda' too, in current implementation, ParallelExecutor's
      // 'use_cuda' will rewrite ExecutionStrategy's 'use_cuda'.
Y
yuyang18 已提交
841 842 843 844 845
      .def_property(
          "allow_op_delay",
          [](const ExecutionStrategy &self) { return self.allow_op_delay_; },
          [](ExecutionStrategy &self, bool allow_op_delay) {
            self.allow_op_delay_ = allow_op_delay;
C
chengduo 已提交
846 847 848 849
          },
          R"DOC(The type is BOOL, allow_op_delay represents whether to delay the
                communication operators to run, it may make the execution faster.
                Note that in some models, allow_op_delay may cause program hang. Default False.)DOC")
Y
yuyang18 已提交
850 851 852 853 854 855 856
      .def_property(
          "num_iteration_per_drop_scope",
          [](const ExecutionStrategy &self) {
            return self.num_iteration_per_drop_scope_;
          },
          [](ExecutionStrategy &self, size_t num_iteration_per_drop_scope) {
            self.num_iteration_per_drop_scope_ = num_iteration_per_drop_scope;
C
chengduo 已提交
857 858 859 860 861 862 863 864 865 866 867
          },
          R"DOC(The type is INT, num_iteration_per_drop_scope indicates how
                many iterations to clean up the temp variables which
                is generated during execution. It may make the execution faster,
                because the temp variable's shape maybe the same between two iterations. Default 100.

                NOTES:
                    1. If you fetch data when calling the 'run', the ParallelExecutor
                       will clean up the temp variables at the end of the current iteration.
                    2. In some NLP model, it may cause the GPU memory is insufficient,
                       in this case, you should reduce `num_iteration_per_drop_scope`.
868 869 870 871 872 873
              )DOC")
      .def_property("_dry_run",
                    [](const ExecutionStrategy &self) { return self.dry_run_; },
                    [](ExecutionStrategy &self, bool dry_run) {
                      self.dry_run_ = dry_run;
                    });
C
chengduo 已提交
874

Y
yuyang18 已提交
875
  exec_strategy.def_property(
Y
yuyang18 已提交
876 877 878 879 880 881 882
      "use_experimental_executor",
      [](const ExecutionStrategy &self) {
        return self.type_ == ExecutionStrategy::kExperimental;
      },
      [](ExecutionStrategy &self, bool experimental) {
        self.type_ = experimental ? ExecutionStrategy::kExperimental
                                  : ExecutionStrategy::kDefault;
Y
yuyang18 已提交
883 884
      });

C
chengduo 已提交
885 886 887 888
  py::class_<BuildStrategy> build_strategy(pe, "BuildStrategy", R"DOC(
    BuildStrategy allows the user to more preciously control how to
    build the SSA Graph in ParallelExecutor by setting the property.

C
chengduo 已提交
889 890 891 892 893 894 895 896 897 898 899
    Examples:
        .. code-block:: python

          build_strategy = fluid.BuildStrategy()
          build_strategy.reduce_strategy = fluid.BuildStrategy.ReduceStrategy.Reduce

          train_exe = fluid.ParallelExecutor(use_cuda=True,
                                             loss_name=loss.name,
                                             build_strategy=build_strategy)

          train_loss, = train_exe.run([loss.name], feed=feed_dict)
C
chengduo 已提交
900
)DOC");
Y
yuyang18 已提交
901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916

  py::enum_<BuildStrategy::ReduceStrategy>(build_strategy, "ReduceStrategy")
      .value("Reduce", BuildStrategy::ReduceStrategy::kReduce)
      .value("AllReduce", BuildStrategy::ReduceStrategy::kAllReduce);
  py::enum_<BuildStrategy::GradientScaleStrategy>(build_strategy,
                                                  "GradientScaleStrategy")
      .value("CoeffNumDevice",
             BuildStrategy::GradientScaleStrategy::kCoeffNumDevice)
      .value("One", BuildStrategy::GradientScaleStrategy::kOne)
      .value("Customized", BuildStrategy::GradientScaleStrategy::kCustomized);

  build_strategy.def(py::init())
      .def_property(
          "reduce_strategy",
          [](const BuildStrategy &self) { return self.reduce_; },
          [](BuildStrategy &self, BuildStrategy::ReduceStrategy strategy) {
X
Xin Pan 已提交
917
            PADDLE_ENFORCE(!self.IsFinalized(), "BuildStrategy is finlaized.");
Y
yuyang18 已提交
918
            self.reduce_ = strategy;
C
chengduo 已提交
919 920 921 922 923 924 925
          },
          R"DOC(The type is STR, there are two reduce strategies in ParallelExecutor,
                  'AllReduce' and 'Reduce'. If you want that all the parameters'
                  optimization are done on all devices independently, you should choose 'AllReduce';
                  if you choose 'Reduce', all the parameters' optimization will be evenly distributed
                  to different devices, and then broadcast the optimized parameter to other devices.
                  In some models, `Reduce` is faster. Default 'AllReduce'. )DOC")
Y
yuyang18 已提交
926 927 928 929 930
      .def_property(
          "gradient_scale_strategy",
          [](const BuildStrategy &self) { return self.gradient_scale_; },
          [](BuildStrategy &self,
             BuildStrategy::GradientScaleStrategy strategy) {
X
Xin Pan 已提交
931
            PADDLE_ENFORCE(!self.IsFinalized(), "BuildStrategy is finlaized.");
Y
yuyang18 已提交
932
            self.gradient_scale_ = strategy;
C
chengduo 已提交
933 934 935 936 937 938
          },
          R"DOC(The type is STR, there are three ways of defining :math:`loss@grad` in
                   ParallelExecutor, 'CoeffNumDevice', 'One' and 'Customized'. By default,
                   ParallelExecutor sets the :math:`loss@grad` according to the number of devices.
                   If you want to customize :math:`loss@grad`, you can choose 'Customized'.
                   Default 'CoeffNumDevice'.)DOC")
Y
yuyang18 已提交
939 940 941 942
      .def_property(
          "debug_graphviz_path",
          [](const BuildStrategy &self) { return self.debug_graphviz_path_; },
          [](BuildStrategy &self, const std::string &path) {
X
Xin Pan 已提交
943
            PADDLE_ENFORCE(!self.IsFinalized(), "BuildStrategy is finlaized.");
Y
yuyang18 已提交
944
            self.debug_graphviz_path_ = path;
C
chengduo 已提交
945 946 947 948
          },
          R"DOC(The type is STR, debug_graphviz_path indicate the path that
                    writing the SSA Graph to file in the form of graphviz, you.
                    It is useful for debugging. Default "")DOC")
S
sneaxiy 已提交
949 950 951 952 953 954
      .def_property(
          "enable_sequential_execution",
          [](const BuildStrategy &self) {
            return self.enable_sequential_execution_;
          },
          [](BuildStrategy &self, bool b) {
X
Xin Pan 已提交
955
            PADDLE_ENFORCE(!self.IsFinalized(), "BuildStrategy is finlaized.");
S
sneaxiy 已提交
956 957 958 959 960 961 962 963 964
            self.enable_sequential_execution_ = b;
          },
          R"DOC(The type is BOOL. If set True, the execution order of ops would be the same as what is in the program. Default False.)DOC")
      .def_property(
          "remove_unnecessary_lock",
          [](const BuildStrategy &self) {
            return self.remove_unnecessary_lock_;
          },
          [](BuildStrategy &self, bool b) {
X
Xin Pan 已提交
965
            PADDLE_ENFORCE(!self.IsFinalized(), "BuildStrategy is finlaized.");
S
sneaxiy 已提交
966 967 968
            self.remove_unnecessary_lock_ = b;
          },
          R"DOC(The type is BOOL. If set True, some locks in GPU ops would be released and ParallelExecutor would run faster. Default False.)DOC")
969 970 971 972 973 974
      .def_property(
          "num_trainers",
          [](const BuildStrategy &self) { return self.num_trainers_; },
          [](BuildStrategy &self, int num_trainers) {
            self.num_trainers_ = num_trainers;
          })
975 976 977 978 979 980 981 982 983 984 985 986
      .def_property(
          "trainers_endpoints",
          [](const BuildStrategy &self) { return self.trainers_endpoints_; },
          [](BuildStrategy &self,
             const std::vector<std::string> &trainers_endpoints) {
            self.trainers_endpoints_ = trainers_endpoints;
          })
      .def_property("trainer_id",
                    [](const BuildStrategy &self) { return self.trainer_id_; },
                    [](BuildStrategy &self, int trainer_id) {
                      self.trainer_id_ = trainer_id;
                    })
C
chengduo 已提交
987 988 989 990 991 992
      .def_property(
          "fuse_elewise_add_act_ops",
          [](const BuildStrategy &self) {
            return self.fuse_elewise_add_act_ops_;
          },
          [](BuildStrategy &self, bool b) {
X
Xin Pan 已提交
993
            PADDLE_ENFORCE(!self.IsFinalized(), "BuildStrategy is finlaized.");
C
chengduo 已提交
994 995 996 997 998
            self.fuse_elewise_add_act_ops_ = b;
          },
          R"DOC(The type is BOOL, fuse_elewise_add_act_ops indicate whether
                     to fuse elementwise_add_op and activation_op,
                     it may make the execution faster. Default False)DOC")
D
dzhwinter 已提交
999 1000 1001 1002
      .def_property(
          "memory_optimize",
          [](const BuildStrategy &self) { return self.memory_optimize_; },
          [](BuildStrategy &self, bool b) { self.memory_optimize_ = b; })
1003 1004 1005 1006
      .def_property(
          "is_distribution",
          [](const BuildStrategy &self) { return self.is_distribution_; },
          [](BuildStrategy &self, bool b) { self.is_distribution_ = b; })
D
dzhwinter 已提交
1007 1008 1009 1010
      .def_property(
          "memory_early_delete",
          [](const BuildStrategy &self) { return self.memory_early_delete_; },
          [](BuildStrategy &self, bool b) { self.memory_early_delete_ = b; })
1011
      .def("_finalize_strategy_and_create_passes",
X
fix  
Xin Pan 已提交
1012
           [](BuildStrategy &self) -> std::shared_ptr<ir::PassBuilder> {
1013 1014 1015 1016 1017
             return self.CreatePassesFromStrategy(true);
           },
           R"DOC(Allow user to customized passes. Normally model-specific
                optimization passes should be defined in this way. BuildStrategy
                cannot be updated after being finalized.)DOC");
Y
yuyang18 已提交
1018 1019 1020

  pe.def(py::init<const std::vector<platform::Place> &,
                  const std::unordered_set<std::string> &, const ProgramDesc &,
Y
yuyang18 已提交
1021
                  const std::string &, Scope *, std::vector<Scope *> &,
1022 1023
                  const ExecutionStrategy &, const BuildStrategy &, size_t,
                  size_t>())
Y
Yu Yang 已提交
1024 1025 1026 1027
      // NOTE: even we return a vec<Scope*>* to Python use reference policy.
      // We still cannot get local_scope from this vector, since the element
      // of vec<Scope*> will be freed by Python GC. We can only return Scope*
      // one by one and mark them as reference.
1028 1029 1030 1031 1032
      .def("local_scopes",
           [](ParallelExecutor &self) -> std::vector<Scope *> * {
             return &self.GetLocalScopes();
           },
           py::return_value_policy::reference)
Y
Yu Yang 已提交
1033 1034 1035 1036
      .def("feed_tensors_into_local_scopes",
           &ParallelExecutor::FeedTensorsIntoLocalScopes)
      .def("feed_and_split_tensor_into_local_scopes",
           &ParallelExecutor::FeedAndSplitTensorIntoLocalScopes)
S
sneaxiy 已提交
1037 1038 1039 1040 1041 1042
      .def("run", [](ParallelExecutor &self,
                     const std::vector<std::string> &fetch_tensors,
                     const std::string &fetched_var_name) {
        pybind11::gil_scoped_release release;
        self.Run(fetch_tensors, fetched_var_name);
      });
Y
Yu Yang 已提交
1043

1044
  BindRecordIOWriter(&m);
W
Wang Guibao 已提交
1045
  BindAsyncExecutor(&m);
L
Luo Tao 已提交
1046
}
1047
}  // namespace pybind
1048
}  // namespace paddle