train.py 7.2 KB
Newer Older
Q
qingqing01 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

import os, sys
# add python path of PadleDetection to sys.path
parent_path = os.path.abspath(os.path.join(__file__, *(['..'] * 2)))
if parent_path not in sys.path:
    sys.path.append(parent_path)

# ignore numba warning
import warnings
warnings.filterwarnings('ignore')
import random
import datetime
import time
import numpy as np

import paddle
from paddle.distributed import ParallelEnv

from ppdet.core.workspace import load_config, merge_config, create
from ppdet.utils.checkpoint import load_weight, load_pretrain_weight, save_model

import ppdet.utils.cli as cli
import ppdet.utils.check as check
import ppdet.utils.stats as stats
from ppdet.utils.logger import setup_logger
logger = setup_logger('train')


def parse_args():
    parser = cli.ArgsParser()
    parser.add_argument(
        "--weight_type",
        default='pretrain',
        type=str,
        help="Loading Checkpoints only support 'pretrain', 'finetune', 'resume'."
    )
    parser.add_argument(
        "--fp16",
        action='store_true',
        default=False,
        help="Enable mixed precision training.")
    parser.add_argument(
        "--loss_scale",
        default=8.,
        type=float,
        help="Mixed precision training loss scale.")
    parser.add_argument(
        "--eval",
        action='store_true',
        default=False,
        help="Whether to perform evaluation in train")
    parser.add_argument(
        "--output_eval",
        default=None,
        type=str,
        help="Evaluation directory, default is current directory.")
    parser.add_argument(
        "--enable_ce",
        type=bool,
        default=False,
        help="If set True, enable continuous evaluation job."
        "This flag is only used for internal test.")
    parser.add_argument(
        "--use_gpu", action='store_true', default=False, help="data parallel")
    args = parser.parse_args()
    return args


def run(FLAGS, cfg, place):
    env = os.environ
    FLAGS.dist = 'PADDLE_TRAINER_ID' in env and 'PADDLE_TRAINERS_NUM' in env
    if FLAGS.dist:
        trainer_id = int(env['PADDLE_TRAINER_ID'])
        local_seed = (99 + trainer_id)
        random.seed(local_seed)
        np.random.seed(local_seed)

    if FLAGS.enable_ce:
        random.seed(0)
        np.random.seed(0)

    if ParallelEnv().nranks > 1:
        paddle.distributed.init_parallel_env()

    # Data 
    datasets = cfg.TrainDataset
    train_loader = create('TrainReader')(datasets, cfg['worker_num'])
    steps = len(train_loader)

    # Model
    model = create(cfg.architecture)

    # Optimizer
    lr = create('LearningRate')(steps)
    optimizer = create('OptimizerBuilder')(lr, model.parameters())

    # Init Model & Optimzer   
    start_epoch = 0
    if FLAGS.weight_type == 'resume':
        start_epoch = load_weight(model, cfg.pretrain_weights, optimizer)
    else:
        load_pretrain_weight(model, cfg.pretrain_weights,
                             cfg.get('load_static_weights', False),
                             FLAGS.weight_type)

    if getattr(model.backbone, 'norm_type', None) == 'sync_bn':
        assert cfg.use_gpu and ParallelEnv(
        ).nranks > 1, 'you should use bn rather than sync_bn while using a single gpu'
    # sync_bn = (getattr(model.backbone, 'norm_type', None) == 'sync_bn' and
    #            cfg.use_gpu and ParallelEnv().nranks > 1)
    # if sync_bn:
    #     model = paddle.nn.SyncBatchNorm.convert_sync_batchnorm(model)

    # Parallel Model 
    if ParallelEnv().nranks > 1:
        model = paddle.DataParallel(model)

    cfg_name = os.path.basename(FLAGS.config).split('.')[0]
    save_dir = os.path.join(cfg.save_dir, cfg_name)

    # Run Train
    end_epoch = int(cfg.epoch)
    batch_size = int(cfg['TrainReader']['batch_size'])
    total_steps = (end_epoch - start_epoch) * steps
    step_id = 0

    train_stats = stats.TrainingStats(cfg.log_iter)
    batch_time = stats.SmoothedValue(fmt='{avg:.4f}')
    data_time = stats.SmoothedValue(fmt='{avg:.4f}')

    end_time = time.time()
    space_fmt = ':' + str(len(str(steps))) + 'd'
    # Run Train
    for cur_eid in range(start_epoch, end_epoch):
        datasets.set_epoch(cur_eid)
        for iter_id, data in enumerate(train_loader):
            data_time.update(time.time() - end_time)
            # Model Forward
            model.train()
            outputs = model(data, mode='train')
            loss = outputs['loss']
            # Model Backward
            loss.backward()
            optimizer.step()
            curr_lr = optimizer.get_lr()
            lr.step()
            optimizer.clear_grad()

            batch_time.update(time.time() - end_time)
            if ParallelEnv().nranks < 2 or ParallelEnv().local_rank == 0:
                train_stats.update(outputs)
                logs = train_stats.log()
                if iter_id % cfg.log_iter == 0:
                    eta_sec = (total_steps - step_id) * batch_time.global_avg
                    eta_str = str(datetime.timedelta(seconds=int(eta_sec)))
                    ips = float(batch_size) / batch_time.avg
                    fmt = ' '.join([
                        'Epoch: [{}]',
                        '[{' + space_fmt + '}/{}]',
                        '{meters}',
                        'eta: {eta}',
                        'batch_cost: {btime}',
                        'data_cost: {dtime}',
                        'ips: {ips:.4f} images/s',
                    ])
                    fmt = fmt.format(
                        cur_eid,
                        iter_id,
                        steps,
                        meters=logs,
                        eta=eta_str,
                        btime=str(batch_time),
                        dtime=str(data_time),
                        ips=ips)
                    logger.info(fmt)
            step_id += 1
            end_time = time.time()  # after copy outputs to CPU.
        # Save Stage 
        if (ParallelEnv().local_rank == 0 and \
            (cur_eid % cfg.snapshot_epoch) == 0) or (cur_eid + 1) == end_epoch:
            save_name = str(
                cur_eid) if cur_eid + 1 != end_epoch else "model_final"
            save_model(model, optimizer, save_dir, save_name, cur_eid + 1)


def main():
    FLAGS = parse_args()

    cfg = load_config(FLAGS.config)
    merge_config(FLAGS.opt)
    check.check_config(cfg)
    check.check_gpu(cfg.use_gpu)
    check.check_version()

    place = 'gpu:{}'.format(ParallelEnv().dev_id) if cfg.use_gpu else 'cpu'
    place = paddle.set_device(place)

    run(FLAGS, cfg, place)


if __name__ == "__main__":
    main()