coco.py 13.6 KB
Newer Older
Q
qingqing01 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26
# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved. 
#   
# Licensed under the Apache License, Version 2.0 (the "License");   
# you may not use this file except in compliance with the License.  
# You may obtain a copy of the License at   
#   
#     http://www.apache.org/licenses/LICENSE-2.0    
#   
# Unless required by applicable law or agreed to in writing, software   
# distributed under the License is distributed on an "AS IS" BASIS, 
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.  
# See the License for the specific language governing permissions and   
# limitations under the License.

import os
import numpy as np
from ppdet.core.workspace import register, serializable
from .dataset import DetDataset

from ppdet.utils.logger import setup_logger
logger = setup_logger(__name__)


@register
@serializable
class COCODataSet(DetDataset):
F
Feng Ni 已提交
27 28 29 30 31 32 33 34 35
    """
    Load dataset with COCO format.

    Args:
        dataset_dir (str): root directory for dataset.
        image_dir (str): directory for images.
        anno_path (str): coco annotation file path.
        data_fields (list): key name of data dictionary, at least have 'image'.
        sample_num (int): number of samples to load, -1 means all.
36 37 38 39 40
        load_crowd (bool): whether to load crowded ground-truth. 
            False as default
        allow_empty (bool): whether to load empty entry. False as default
        empty_ratio (float): the ratio of empty record number to total 
            record's, if empty_ratio is out of [0. ,1.), do not sample the 
41
            records and use all the empty entries. 1. as default
42
        repeat (int): repeat times for dataset, use in benchmark.
F
Feng Ni 已提交
43 44
    """

Q
qingqing01 已提交
45 46 47 48 49
    def __init__(self,
                 dataset_dir=None,
                 image_dir=None,
                 anno_path=None,
                 data_fields=['image'],
50 51
                 sample_num=-1,
                 load_crowd=False,
52
                 allow_empty=False,
53 54 55 56 57 58 59 60 61
                 empty_ratio=1.,
                 repeat=1):
        super(COCODataSet, self).__init__(
            dataset_dir,
            image_dir,
            anno_path,
            data_fields,
            sample_num,
            repeat=repeat)
Q
qingqing01 已提交
62 63
        self.load_image_only = False
        self.load_semantic = False
64 65 66 67 68 69 70 71 72
        self.load_crowd = load_crowd
        self.allow_empty = allow_empty
        self.empty_ratio = empty_ratio

    def _sample_empty(self, records, num):
        # if empty_ratio is out of [0. ,1.), do not sample the records
        if self.empty_ratio < 0. or self.empty_ratio >= 1.:
            return records
        import random
73 74
        sample_num = min(
            int(num * self.empty_ratio / (1 - self.empty_ratio)), len(records))
75 76
        records = random.sample(records, sample_num)
        return records
Q
qingqing01 已提交
77

78
    def parse_dataset(self):
Q
qingqing01 已提交
79 80 81 82 83 84 85 86
        anno_path = os.path.join(self.dataset_dir, self.anno_path)
        image_dir = os.path.join(self.dataset_dir, self.image_dir)

        assert anno_path.endswith('.json'), \
            'invalid coco annotation file: ' + anno_path
        from pycocotools.coco import COCO
        coco = COCO(anno_path)
        img_ids = coco.getImgIds()
87
        img_ids.sort()
Q
qingqing01 已提交
88 89
        cat_ids = coco.getCatIds()
        records = []
90
        empty_records = []
Q
qingqing01 已提交
91 92
        ct = 0

K
Kaipeng Deng 已提交
93 94
        self.catid2clsid = dict({catid: i for i, catid in enumerate(cat_ids)})
        self.cname2cid = dict({
Q
qingqing01 已提交
95
            coco.loadCats(catid)[0]['name']: clsid
K
Kaipeng Deng 已提交
96
            for catid, clsid in self.catid2clsid.items()
Q
qingqing01 已提交
97 98 99 100 101 102 103 104
        })

        if 'annotations' not in coco.dataset:
            self.load_image_only = True
            logger.warning('Annotation file: {} does not contains ground truth '
                           'and load image information only.'.format(anno_path))

        for img_id in img_ids:
105
            img_anno = coco.loadImgs([img_id])[0]
Q
qingqing01 已提交
106 107 108 109 110 111
            im_fname = img_anno['file_name']
            im_w = float(img_anno['width'])
            im_h = float(img_anno['height'])

            im_path = os.path.join(image_dir,
                                   im_fname) if image_dir else im_fname
112
            is_empty = False
Q
qingqing01 已提交
113 114 115 116 117 118 119 120 121 122 123
            if not os.path.exists(im_path):
                logger.warning('Illegal image file: {}, and it will be '
                               'ignored'.format(im_path))
                continue

            if im_w < 0 or im_h < 0:
                logger.warning('Illegal width: {} or height: {} in annotation, '
                               'and im_id: {} will be ignored'.format(
                                   im_w, im_h, img_id))
                continue

124 125 126 127 128 129 130
            coco_rec = {
                'im_file': im_path,
                'im_id': np.array([img_id]),
                'h': im_h,
                'w': im_w,
            } if 'image' in self.data_fields else {}

Q
qingqing01 已提交
131
            if not self.load_image_only:
132 133
                ins_anno_ids = coco.getAnnIds(
                    imgIds=[img_id], iscrowd=None if self.load_crowd else False)
Q
qingqing01 已提交
134 135 136
                instances = coco.loadAnns(ins_anno_ids)

                bboxes = []
137
                is_rbox_anno = False
Q
qingqing01 已提交
138 139
                for inst in instances:
                    # check gt bbox
140 141
                    if inst.get('ignore', False):
                        continue
Q
qingqing01 已提交
142 143 144 145 146
                    if 'bbox' not in inst.keys():
                        continue
                    else:
                        if not any(np.array(inst['bbox'])):
                            continue
C
cnn 已提交
147

W
wangxinxin08 已提交
148 149 150
                    x1, y1, box_w, box_h = inst['bbox']
                    x2 = x1 + box_w
                    y2 = y1 + box_h
151 152 153 154 155
                    eps = 1e-5
                    if inst['area'] > 0 and x2 - x1 > eps and y2 - y1 > eps:
                        inst['clean_bbox'] = [
                            round(float(x), 3) for x in [x1, y1, x2, y2]
                        ]
Q
qingqing01 已提交
156 157 158 159 160 161 162 163
                        bboxes.append(inst)
                    else:
                        logger.warning(
                            'Found an invalid bbox in annotations: im_id: {}, '
                            'area: {} x1: {}, y1: {}, x2: {}, y2: {}.'.format(
                                img_id, float(inst['area']), x1, y1, x2, y2))

                num_bbox = len(bboxes)
164
                if num_bbox <= 0 and not self.allow_empty:
Q
qingqing01 已提交
165
                    continue
166 167
                elif num_bbox <= 0:
                    is_empty = True
Q
qingqing01 已提交
168 169 170 171 172 173 174 175 176

                gt_bbox = np.zeros((num_bbox, 4), dtype=np.float32)
                gt_class = np.zeros((num_bbox, 1), dtype=np.int32)
                is_crowd = np.zeros((num_bbox, 1), dtype=np.int32)
                gt_poly = [None] * num_bbox

                has_segmentation = False
                for i, box in enumerate(bboxes):
                    catid = box['category_id']
K
Kaipeng Deng 已提交
177
                    gt_class[i][0] = self.catid2clsid[catid]
Q
qingqing01 已提交
178 179 180 181
                    gt_bbox[i, :] = box['clean_bbox']
                    is_crowd[i][0] = box['iscrowd']
                    # check RLE format 
                    if 'segmentation' in box and box['iscrowd'] == 1:
W
wangxinxin08 已提交
182
                        gt_poly[i] = [[0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0]]
183
                    elif 'segmentation' in box and box['segmentation']:
184 185 186 187 188 189 190 191 192
                        if not np.array(box['segmentation']
                                        ).size > 0 and not self.allow_empty:
                            bboxes.pop(i)
                            gt_poly.pop(i)
                            np.delete(is_crowd, i)
                            np.delete(gt_class, i)
                            np.delete(gt_bbox, i)
                        else:
                            gt_poly[i] = box['segmentation']
Q
qingqing01 已提交
193 194
                        has_segmentation = True

195 196
                if has_segmentation and not any(
                        gt_poly) and not self.allow_empty:
Q
qingqing01 已提交
197 198
                    continue

W
wangxinxin08 已提交
199 200 201 202 203 204
                gt_rec = {
                    'is_crowd': is_crowd,
                    'gt_class': gt_class,
                    'gt_bbox': gt_bbox,
                    'gt_poly': gt_poly,
                }
C
cnn 已提交
205

Q
qingqing01 已提交
206 207 208 209 210 211 212 213 214 215 216 217
                for k, v in gt_rec.items():
                    if k in self.data_fields:
                        coco_rec[k] = v

                # TODO: remove load_semantic
                if self.load_semantic and 'semantic' in self.data_fields:
                    seg_path = os.path.join(self.dataset_dir, 'stuffthingmaps',
                                            'train2017', im_fname[:-3] + 'png')
                    coco_rec.update({'semantic': seg_path})

            logger.debug('Load file: {}, im_id: {}, h: {}, w: {}.'.format(
                im_path, img_id, im_h, im_w))
218 219 220 221
            if is_empty:
                empty_records.append(coco_rec)
            else:
                records.append(coco_rec)
Q
qingqing01 已提交
222 223 224
            ct += 1
            if self.sample_num > 0 and ct >= self.sample_num:
                break
225
        assert ct > 0, 'not found any coco record in %s' % (anno_path)
Q
qingqing01 已提交
226
        logger.debug('{} samples in file {}'.format(ct, anno_path))
227
        if self.allow_empty and len(empty_records) > 0:
228 229
            empty_records = self._sample_empty(empty_records, len(records))
            records += empty_records
K
Kaipeng Deng 已提交
230
        self.roidbs = records
231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353


@register
@serializable
class SlicedCOCODataSet(COCODataSet):
    """Sliced COCODataSet"""

    def __init__(
            self,
            dataset_dir=None,
            image_dir=None,
            anno_path=None,
            data_fields=['image'],
            sample_num=-1,
            load_crowd=False,
            allow_empty=False,
            empty_ratio=1.,
            repeat=1,
            sliced_size=[640, 640],
            overlap_ratio=[0.25, 0.25], ):
        super(SlicedCOCODataSet, self).__init__(
            dataset_dir=dataset_dir,
            image_dir=image_dir,
            anno_path=anno_path,
            data_fields=data_fields,
            sample_num=sample_num,
            load_crowd=load_crowd,
            allow_empty=allow_empty,
            empty_ratio=empty_ratio,
            repeat=repeat, )
        self.sliced_size = sliced_size
        self.overlap_ratio = overlap_ratio

    def parse_dataset(self):
        anno_path = os.path.join(self.dataset_dir, self.anno_path)
        image_dir = os.path.join(self.dataset_dir, self.image_dir)

        assert anno_path.endswith('.json'), \
            'invalid coco annotation file: ' + anno_path
        from pycocotools.coco import COCO
        coco = COCO(anno_path)
        img_ids = coco.getImgIds()
        img_ids.sort()
        cat_ids = coco.getCatIds()
        records = []
        empty_records = []
        ct = 0
        ct_sub = 0

        self.catid2clsid = dict({catid: i for i, catid in enumerate(cat_ids)})
        self.cname2cid = dict({
            coco.loadCats(catid)[0]['name']: clsid
            for catid, clsid in self.catid2clsid.items()
        })

        if 'annotations' not in coco.dataset:
            self.load_image_only = True
            logger.warning('Annotation file: {} does not contains ground truth '
                           'and load image information only.'.format(anno_path))
        try:
            import sahi
            from sahi.slicing import slice_image
        except Exception as e:
            logger.error(
                'sahi not found, plaese install sahi. '
                'for example: `pip install sahi`, see https://github.com/obss/sahi.'
            )
            raise e

        sub_img_ids = 0
        for img_id in img_ids:
            img_anno = coco.loadImgs([img_id])[0]
            im_fname = img_anno['file_name']
            im_w = float(img_anno['width'])
            im_h = float(img_anno['height'])

            im_path = os.path.join(image_dir,
                                   im_fname) if image_dir else im_fname
            is_empty = False
            if not os.path.exists(im_path):
                logger.warning('Illegal image file: {}, and it will be '
                               'ignored'.format(im_path))
                continue

            if im_w < 0 or im_h < 0:
                logger.warning('Illegal width: {} or height: {} in annotation, '
                               'and im_id: {} will be ignored'.format(
                                   im_w, im_h, img_id))
                continue

            slice_image_result = sahi.slicing.slice_image(
                image=im_path,
                slice_height=self.sliced_size[0],
                slice_width=self.sliced_size[1],
                overlap_height_ratio=self.overlap_ratio[0],
                overlap_width_ratio=self.overlap_ratio[1])

            sub_img_num = len(slice_image_result)
            for _ind in range(sub_img_num):
                im = slice_image_result.images[_ind]
                coco_rec = {
                    'image': im,
                    'im_id': np.array([sub_img_ids + _ind]),
                    'h': im.shape[0],
                    'w': im.shape[1],
                    'ori_im_id': np.array([img_id]),
                    'st_pix': np.array(
                        slice_image_result.starting_pixels[_ind],
                        dtype=np.float32),
                    'is_last': 1 if _ind == sub_img_num - 1 else 0,
                } if 'image' in self.data_fields else {}
                records.append(coco_rec)
            ct_sub += sub_img_num
            ct += 1
            if self.sample_num > 0 and ct >= self.sample_num:
                break
        assert ct > 0, 'not found any coco record in %s' % (anno_path)
        logger.info('{} samples and slice to {} sub_samples in file {}'.format(
            ct, ct_sub, anno_path))
        if self.allow_empty and len(empty_records) > 0:
            empty_records = self._sample_empty(empty_records, len(records))
            records += empty_records
        self.roidbs = records