keypoint_detector.h 4.5 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132
//   Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#pragma once

#include <ctime>
#include <memory>
#include <string>
#include <utility>
#include <vector>

#include <opencv2/core/core.hpp>
#include <opencv2/highgui/highgui.hpp>
#include <opencv2/imgproc/imgproc.hpp>

#include "paddle_inference_api.h"  // NOLINT

#include "include/config_parser.h"
#include "include/keypoint_postprocess.h"
#include "include/preprocess_op.h"

using namespace paddle_infer;

namespace PaddleDetection {
// Object KeyPoint Result
struct KeyPointResult {
  // Keypoints: shape(N x 3); N: number of Joints; 3: x,y,conf
  std::vector<float> keypoints;
  int num_joints = -1;
};

// Visualiztion KeyPoint Result
cv::Mat VisualizeKptsResult(const cv::Mat& img,
                            const std::vector<KeyPointResult>& results,
                            const std::vector<int>& colormap);

class KeyPointDetector {
 public:
  explicit KeyPointDetector(const std::string& model_dir,
                            const std::string& device = "CPU",
                            bool use_mkldnn = false,
                            int cpu_threads = 1,
                            const std::string& run_mode = "fluid",
                            const int batch_size = 1,
                            const int gpu_id = 0,
                            const int trt_min_shape = 1,
                            const int trt_max_shape = 1280,
                            const int trt_opt_shape = 640,
                            bool trt_calib_mode = false,
                            bool use_dark = true) {
    this->device_ = device;
    this->gpu_id_ = gpu_id;
    this->cpu_math_library_num_threads_ = cpu_threads;
    this->use_mkldnn_ = use_mkldnn;
    this->use_dark = use_dark;

    this->trt_min_shape_ = trt_min_shape;
    this->trt_max_shape_ = trt_max_shape;
    this->trt_opt_shape_ = trt_opt_shape;
    this->trt_calib_mode_ = trt_calib_mode;
    config_.load_config(model_dir);
    this->use_dynamic_shape_ = config_.use_dynamic_shape_;
    this->min_subgraph_size_ = config_.min_subgraph_size_;
    threshold_ = config_.draw_threshold_;
    preprocessor_.Init(config_.preprocess_info_);
    LoadModel(model_dir, batch_size, run_mode);
  }

  // Load Paddle inference model
  void LoadModel(const std::string& model_dir,
                 const int batch_size = 1,
                 const std::string& run_mode = "fluid");

  // Run predictor
  void Predict(const std::vector<cv::Mat> imgs,
               std::vector<std::vector<float>>& center,
               std::vector<std::vector<float>>& scale,
               const double threshold = 0.5,
               const int warmup = 0,
               const int repeats = 1,
               std::vector<KeyPointResult>* result = nullptr,
               std::vector<double>* times = nullptr);

  // Get Model Label list
  const std::vector<std::string>& GetLabelList() const {
    return config_.label_list_;
  }

 private:
  std::string device_ = "CPU";
  int gpu_id_ = 0;
  int cpu_math_library_num_threads_ = 1;
  bool use_dark = true;
  bool use_mkldnn_ = false;
  int min_subgraph_size_ = 3;
  bool use_dynamic_shape_ = false;
  int trt_min_shape_ = 1;
  int trt_max_shape_ = 1280;
  int trt_opt_shape_ = 640;
  bool trt_calib_mode_ = false;
  // Preprocess image and copy data to input buffer
  void Preprocess(const cv::Mat& image_mat);
  // Postprocess result
  void Postprocess(std::vector<float>& output,
                   std::vector<int> output_shape,
                   std::vector<int64_t>& idxout,
                   std::vector<int> idx_shape,
                   std::vector<KeyPointResult>* result,
                   std::vector<std::vector<float>>& center,
                   std::vector<std::vector<float>>& scale);

  std::shared_ptr<Predictor> predictor_;
  Preprocessor preprocessor_;
  ImageBlob inputs_;
  std::vector<float> output_data_;
  std::vector<int64_t> idx_data_;
  float threshold_;
  ConfigPaser config_;
};

}  // namespace PaddleDetection