memory_optimize_pass.h 3.9 KB
Newer Older
Y
Yan Chunwei 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
// Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#pragma once

#include "paddle/fluid/inference/analysis/analysis_pass.h"
Y
Yan Chunwei 已提交
18
#include "paddle/fluid/platform/port.h"
Y
Yan Chunwei 已提交
19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106

namespace paddle {
namespace inference {
namespace analysis {

/*
 * Memory optimization pass for inference with pre-analysis of memory usage
 * without GC.
 * Different from training, the inference memory reuse strategies doesn't
 * include GC for that overhead is too much when batch size equals one.
 *
 * The inference memory reuse tries to pre-determine the tensor reusing strategy
 * without runtime overhead.
 *
 * To improve the strategy's performance, a warm-up running is introduced:
 *   - Before officially deploy the inference program, one should warm it up and
 *     generate some runtime cache,
 *   - Run the inference program with several batches of data, it will persist
 *     some runtime information about memory of tensors to disk, we call the
 *     information the memory reusing cache,
 *   - With the memory reusing cache, user can deploy the inference to a
 *     service, before running the model, the inference program will load the
 *     memory cache, analysis it and generate the best memory reusing strategy,
 *     and adjust the execution of the network.
 *
 * With the warm-up and memory reusing cache design, the memory reusing
 * algorithm can analysis the real memory consume of the tensors, even with the
 * flexible LoDTensor and special shape changing operators such as
 * sequence-pooling.
 */
class MemoryOptimizePass : public AnalysisPass {
 public:
  using space_table_t = std::unordered_map<std::string, size_t>;
  using lifecycle_t = std::pair<int, int>;

  struct MemoryAllocation {
    size_t allocated;  // allocated memory in byte.
    size_t saved;      // saved memory in byte.
    int sort_kind;     // the kind of the corresponding sorting algorithm.

    // Get the memory saving ratio of temporary variables.
    float GetSavingRatio() const;
  };

  virtual ~MemoryOptimizePass() = default;

 protected:
  void RunImpl(Argument *argument) override;

 private:
  void CollectLifeCycle(
      std::unordered_map<std::string, lifecycle_t> *lifecycles,
      int sort_kind) const;

  void CollectVarMemorySize(
      const std::unordered_map<std::string, size_t> &batch_var_ave_dim,
      std::unordered_map<std::string, framework::ir::Node *> *tensor_nodes,
      space_table_t *space_table) const;

  // Returns percentage of saved memory.
  void MakeReusePlan(
      const std::vector<std::unordered_set<std::string>> &var_clusters,
      const std::unordered_map<std::string, size_t> &var_batch_ave_size,
      const space_table_t &space_table,
      std::unordered_map<std::string, std::string> *reuse_table, int sort_kind,
      MemoryAllocation *memory_allocation) const;

  void PerformReusePlan(
      const std::unordered_map<std::string, std::string> &reuse_table,
      int sort_kind, std::unordered_set<std::string> *vars2remove) const;

 public:
  std::string repr() const override;

 private:
  mutable framework::ir::Graph *graph_{nullptr};
  mutable int max_lifecycle_{-1};
};

static std::string GetMemoryCachePath(const std::string &model_path,
                                      const std::string &prog_path) {
  auto path = model_path.empty() ? prog_path : model_path;
  return path + ".memory_cache";
}

}  // namespace analysis
}  // namespace inference
}  // namespace paddle