keypoint_postprocess.cc 5.3 KB
Newer Older
Z
zhiboniu 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147
//   Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#include "include/keypoint_postprocess.h"

cv::Point2f get_3rd_point(cv::Point2f& a, cv::Point2f& b) {
  cv::Point2f direct{a.x - b.x, a.y - b.y};
  return cv::Point2f(a.x - direct.y, a.y + direct.x);
}

std::vector<float> get_dir(float src_point_x,
                           float src_point_y,
                           float rot_rad) {
  float sn = sin(rot_rad);
  float cs = cos(rot_rad);
  std::vector<float> src_result{0.0, 0.0};
  src_result[0] = src_point_x * cs - src_point_y * sn;
  src_result[1] = src_point_x * sn + src_point_y * cs;
  return src_result;
}

void affine_tranform(
    float pt_x, float pt_y, cv::Mat& trans, float* preds, int p) {
  double new1[3] = {pt_x, pt_y, 1.0};
  cv::Mat new_pt(3, 1, trans.type(), new1);
  cv::Mat w = trans * new_pt;
  preds[p * 3 + 1] = static_cast<float>(w.at<double>(0, 0));
  preds[p * 3 + 2] = static_cast<float>(w.at<double>(1, 0));
}

void get_affine_transform(std::vector<float>& center,
                          std::vector<float>& scale,
                          float rot,
                          std::vector<int>& output_size,
                          cv::Mat& trans,
                          int inv) {
  float src_w = scale[0];
  float dst_w = static_cast<float>(output_size[0]);
  float dst_h = static_cast<float>(output_size[1]);
  float rot_rad = rot * 3.1415926535 / 180;
  std::vector<float> src_dir = get_dir(-0.5 * src_w, 0, rot_rad);
  std::vector<float> dst_dir{-0.5 * dst_w, 0.0};
  cv::Point2f srcPoint2f[3], dstPoint2f[3];
  srcPoint2f[0] = cv::Point2f(center[0], center[1]);
  srcPoint2f[1] = cv::Point2f(center[0] + src_dir[0], center[1] + src_dir[1]);
  srcPoint2f[2] = get_3rd_point(srcPoint2f[0], srcPoint2f[1]);

  dstPoint2f[0] = cv::Point2f(dst_w * 0.5, dst_h * 0.5);
  dstPoint2f[1] =
      cv::Point2f(dst_w * 0.5 + dst_dir[0], dst_h * 0.5 + dst_dir[1]);
  dstPoint2f[2] = get_3rd_point(dstPoint2f[0], dstPoint2f[1]);
  if (inv == 0) {
    trans = cv::getAffineTransform(srcPoint2f, dstPoint2f);
  } else {
    trans = cv::getAffineTransform(dstPoint2f, srcPoint2f);
  }
}

void transform_preds(float* coords,
                     std::vector<float>& center,
                     std::vector<float>& scale,
                     std::vector<int>& output_size,
                     std::vector<int64_t>& dim,
                     float* target_coords) {
  cv::Mat trans(2, 3, CV_64FC1);
  get_affine_transform(center, scale, 0, output_size, trans, 1);
  for (int p = 0; p < dim[1]; ++p) {
    affine_tranform(coords[p * 2], coords[p * 2 + 1], trans, target_coords, p);
  }
}

// only for batchsize == 1
void get_max_preds(float* heatmap,
                   std::vector<int>& dim,
                   float* preds,
                   float* maxvals,
                   int batchid,
                   int joint_idx) {
  int num_joints = dim[1];
  int width = dim[3];
  std::vector<int> idx;
  idx.resize(num_joints * 2);

  for (int j = 0; j < dim[1]; j++) {
    float* index = &(
        heatmap[batchid * num_joints * dim[2] * dim[3] + j * dim[2] * dim[3]]);
    float* end = index + dim[2] * dim[3];
    float* max_dis = std::max_element(index, end);
    auto max_id = std::distance(index, max_dis);
    maxvals[j] = *max_dis;
    if (*max_dis > 0) {
      preds[j * 2] = static_cast<float>(max_id % width);
      preds[j * 2 + 1] = static_cast<float>(max_id / width);
    }
  }
}

void get_final_preds(float* heatmap,
                     std::vector<int64_t>& dim,
                     int64_t* idxout,
                     std::vector<int64_t>& idxdim,
                     std::vector<float>& center,
                     std::vector<float> scale,
                     float* preds,
                     int batchid) {
  std::vector<float> coords;
  coords.resize(dim[1] * 2);
  int heatmap_height = dim[2];
  int heatmap_width = dim[3];

  for (int j = 0; j < dim[1]; ++j) {
    int index = (batchid * dim[1] + j) * dim[2] * dim[3];

    int idx = idxout[batchid * dim[1] + j];
    preds[j * 3] = heatmap[index + idx];
    coords[j * 2] = idx % heatmap_width;
    coords[j * 2 + 1] = idx / heatmap_width;

    int px = int(coords[j * 2] + 0.5);
    int py = int(coords[j * 2 + 1] + 0.5);

    if (px > 1 && px < heatmap_width - 1) {
      float diff_x = heatmap[index + py * dim[3] + px + 1] -
                     heatmap[index + py * dim[3] + px - 1];
      coords[j * 2] += diff_x > 0 ? 1 : -1 * 0.25;
    }
    if (py > 1 && py < heatmap_height - 1) {
      float diff_y = heatmap[index + (py + 1) * dim[3] + px] -
                     heatmap[index + (py - 1) * dim[3] + px];
      coords[j * 2 + 1] += diff_y > 0 ? 1 : -1 * 0.25;
    }
  }

  std::vector<int> img_size{heatmap_width, heatmap_height};
  transform_preds(coords.data(), center, scale, img_size, dim, preds);
}