main_keypoint.cc 19.3 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84
//   Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#include <glog/logging.h>

#include <iostream>
#include <string>
#include <vector>
#include <numeric>
#include <sys/types.h>
#include <sys/stat.h>
#include <math.h>
#include <algorithm>

#ifdef _WIN32
#include <direct.h>
#include <io.h>
#elif LINUX
#include <stdarg.h>
#include <sys/stat.h>
#endif

#include "include/object_detector.h"
#include "include/keypoint_detector.h"
#include "include/preprocess_op.h"
#include <gflags/gflags.h>


DEFINE_string(model_dir, "", "Path of object detector inference model");
DEFINE_string(model_dir_keypoint, "", "Path of keypoint detector inference model");
DEFINE_string(image_file, "", "Path of input image");
DEFINE_string(image_dir, "", "Dir of input image, `image_file` has a higher priority.");
DEFINE_int32(batch_size, 1, "batch_size of object detector");
DEFINE_int32(batch_size_keypoint, 8, "batch_size of keypoint detector");
DEFINE_string(video_file, "", "Path of input video, `video_file` or `camera_id` has a highest priority.");
DEFINE_int32(camera_id, -1, "Device id of camera to predict");
DEFINE_bool(use_gpu, false, "Deprecated, please use `--device` to set the device you want to run.");
DEFINE_string(device, "CPU", "Choose the device you want to run, it can be: CPU/GPU/XPU, default is CPU.");
DEFINE_double(threshold, 0.5, "Threshold of score.");
DEFINE_double(threshold_keypoint, 0.5, "Threshold of score.");
DEFINE_string(output_dir, "output", "Directory of output visualization files.");
DEFINE_string(run_mode, "fluid", "Mode of running(fluid/trt_fp32/trt_fp16/trt_int8)");
DEFINE_int32(gpu_id, 0, "Device id of GPU to execute");
DEFINE_bool(run_benchmark, false, "Whether to predict a image_file repeatedly for benchmark");
DEFINE_bool(use_mkldnn, false, "Whether use mkldnn with CPU");
DEFINE_int32(cpu_threads, 1, "Num of threads with CPU");
DEFINE_int32(trt_min_shape, 1, "Min shape of TRT DynamicShapeI");
DEFINE_int32(trt_max_shape, 1280, "Max shape of TRT DynamicShapeI");
DEFINE_int32(trt_opt_shape, 640, "Opt shape of TRT DynamicShapeI");
DEFINE_bool(trt_calib_mode, false, "If the model is produced by TRT offline quantitative calibration, trt_calib_mode need to set True");
DEFINE_bool(use_dark, true, "Whether use dark decode in keypoint postprocess");

void PrintBenchmarkLog(std::vector<double> det_time, int img_num){
  LOG(INFO) << "----------------------- Config info -----------------------";
  LOG(INFO) << "runtime_device: " << FLAGS_device;
  LOG(INFO) << "ir_optim: " << "True";
  LOG(INFO) << "enable_memory_optim: " << "True";
  int has_trt = FLAGS_run_mode.find("trt");
  if (has_trt >= 0) {
    LOG(INFO) << "enable_tensorrt: " << "True";
    std::string precision = FLAGS_run_mode.substr(4, 8);
    LOG(INFO) << "precision: " << precision;
  } else {
    LOG(INFO) << "enable_tensorrt: " << "False";
    LOG(INFO) << "precision: " << "fp32";
  }
  LOG(INFO) << "enable_mkldnn: " << (FLAGS_use_mkldnn ? "True" : "False");
  LOG(INFO) << "cpu_math_library_num_threads: " << FLAGS_cpu_threads;
  LOG(INFO) << "----------------------- Data info -----------------------";
  LOG(INFO) << "batch_size: " << FLAGS_batch_size;
  LOG(INFO) << "input_shape: " << "dynamic shape";
  LOG(INFO) << "----------------------- Model info -----------------------";
  FLAGS_model_dir.erase(FLAGS_model_dir.find_last_not_of("/") + 1);
85 86 87 88 89 90 91 92 93 94 95 96 97 98 99
  LOG(INFO) << "model_name: " << FLAGS_model_dir;
  LOG(INFO) << "----------------------- Perf info ------------------------";
  LOG(INFO) << "Total number of predicted data: " << img_num
            << " and total time spent(ms): "
            << std::accumulate(det_time.begin(), det_time.end(), 0.);
  img_num = std::max(1, img_num);
  LOG(INFO) << "preproce_time(ms): " << det_time[0] / img_num
            << ", inference_time(ms): " << det_time[1] / img_num
            << ", postprocess_time(ms): " << det_time[2] / img_num;
}

void PrintKptsBenchmarkLog(std::vector<double> det_time, int img_num){
  LOG(INFO) << "----------------------- Data info -----------------------";
  LOG(INFO) << "batch_size_keypoint: " << FLAGS_batch_size_keypoint;
  LOG(INFO) << "----------------------- Model info -----------------------";
100
  FLAGS_model_dir_keypoint.erase(FLAGS_model_dir_keypoint.find_last_not_of("/") + 1);
101
  LOG(INFO) << "keypoint_model_name: " << FLAGS_model_dir_keypoint;
102 103 104
  LOG(INFO) << "----------------------- Perf info ------------------------";
  LOG(INFO) << "Total number of predicted data: " << img_num
            << " and total time spent(ms): "
105 106 107
            << std::accumulate(det_time.begin(), det_time.end(), 0.);
  img_num = std::max(1, img_num);
  LOG(INFO) << "Average time cost per person:";
108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155
  LOG(INFO) << "preproce_time(ms): " << det_time[0] / img_num
            << ", inference_time(ms): " << det_time[1] / img_num
            << ", postprocess_time(ms): " << det_time[2] / img_num;
}

static std::string DirName(const std::string &filepath) {
  auto pos = filepath.rfind(OS_PATH_SEP);
  if (pos == std::string::npos) {
    return "";
  }
  return filepath.substr(0, pos);
}

static bool PathExists(const std::string& path){
#ifdef _WIN32
  struct _stat buffer;
  return (_stat(path.c_str(), &buffer) == 0);
#else
  struct stat buffer;
  return (stat(path.c_str(), &buffer) == 0);
#endif  // !_WIN32
}

static void MkDir(const std::string& path) {
  if (PathExists(path)) return;
  int ret = 0;
#ifdef _WIN32
  ret = _mkdir(path.c_str());
#else
  ret = mkdir(path.c_str(), 0755);
#endif  // !_WIN32
  if (ret != 0) {
    std::string path_error(path);
    path_error += " mkdir failed!";
    throw std::runtime_error(path_error);
  }
}

static void MkDirs(const std::string& path) {
  if (path.empty()) return;
  if (PathExists(path)) return;

  MkDirs(DirName(path));
  MkDir(path);
}

void PredictVideo(const std::string& video_path,
                  PaddleDetection::ObjectDetector* det,
156 157
                  PaddleDetection::KeyPointDetector* keypoint,
                  const std::string& output_dir = "output") {
158 159
  // Open video
  cv::VideoCapture capture;
160
  std::string video_out_name = "output.mp4";
161 162 163 164
  if (FLAGS_camera_id != -1){
    capture.open(FLAGS_camera_id);
  }else{
    capture.open(video_path.c_str());
165
    video_out_name = video_path.substr(video_path.find_last_of(OS_PATH_SEP) + 1);
166 167 168 169 170 171
  }
  if (!capture.isOpened()) {
    printf("can not open video : %s\n", video_path.c_str());
    return;
  }

172
  // Get Video info : resolution, fps, frame count
173 174 175
  int video_width = static_cast<int>(capture.get(CV_CAP_PROP_FRAME_WIDTH));
  int video_height = static_cast<int>(capture.get(CV_CAP_PROP_FRAME_HEIGHT));
  int video_fps = static_cast<int>(capture.get(CV_CAP_PROP_FPS));
176 177
  int video_frame_count = static_cast<int>(capture.get(CV_CAP_PROP_FRAME_COUNT));
  printf("fps: %d, frame_count: %d\n", video_fps, video_frame_count);
178 179 180

  // Create VideoWriter for output
  cv::VideoWriter video_out;
181 182 183 184 185
  std::string video_out_path(output_dir);
  if (output_dir.rfind(OS_PATH_SEP) != output_dir.size() - 1) {
    video_out_path += OS_PATH_SEP;
  }
  video_out_path += video_out_name;
186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210
  video_out.open(video_out_path.c_str(),
                 0x00000021,
                 video_fps,
                 cv::Size(video_width, video_height),
                 true);
  if (!video_out.isOpened()) {
    printf("create video writer failed!\n");
    return;
  }

  std::vector<PaddleDetection::ObjectResult> result;
  std::vector<int> bbox_num;
  std::vector<double> det_times;
  auto labels = det->GetLabelList();
  auto colormap = PaddleDetection::GenerateColorMap(labels.size());


  // Store keypoint results
  std::vector<PaddleDetection::KeyPointResult> result_kpts;
  std::vector<cv::Mat> imgs_kpts;
  std::vector<std::vector<float>> center_bs;
  std::vector<std::vector<float>> scale_bs;
  std::vector<int> colormap_kpts = PaddleDetection::GenerateColorMap(20);
  // Capture all frames and do inference
  cv::Mat frame;
211
  int frame_id = 1;
212 213 214 215 216 217 218
  bool is_rbox = false;
  while (capture.read(frame)) {
    if (frame.empty()) {
      break;
    }
    std::vector<cv::Mat> imgs;
    imgs.push_back(frame);
219 220 221
    printf("detect frame: %d\n", frame_id);
    det->Predict(imgs, FLAGS_threshold, 0, 1, &result, &bbox_num, &det_times);
    std::vector<PaddleDetection::ObjectResult> out_result;
222
    for (const auto& item : result) {
223 224 225 226
      if (item.confidence < FLAGS_threshold || item.class_id == -1) {
          continue;
      }
      out_result.push_back(item);
227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253
      if (item.rect.size() > 6){
      is_rbox = true;
      printf("class=%d confidence=%.4f rect=[%d %d %d %d %d %d %d %d]\n",
          item.class_id,
          item.confidence,
          item.rect[0],
          item.rect[1],
          item.rect[2],
          item.rect[3],
          item.rect[4],
          item.rect[5],
          item.rect[6],
          item.rect[7]);
      }
      else{
        printf("class=%d confidence=%.4f rect=[%d %d %d %d]\n",
          item.class_id,
          item.confidence,
          item.rect[0],
          item.rect[1],
          item.rect[2],
          item.rect[3]);
      }
    }

    if(keypoint)
    {
254
      int imsize = out_result.size();
255
      for (int i=0; i<imsize; i++){
256
        auto item = out_result[i];
257 258 259 260 261 262 263 264 265 266 267 268 269 270 271
        cv::Mat crop_img;
        std::vector<double> keypoint_times;
        std::vector<int> rect = {item.rect[0], item.rect[1], item.rect[2], item.rect[3]};
        std::vector<float> center;
        std::vector<float> scale;
        if(item.class_id == 0)
        {
          PaddleDetection::CropImg(frame, crop_img, rect, center, scale);
          center_bs.emplace_back(center);
          scale_bs.emplace_back(scale);
          imgs_kpts.emplace_back(crop_img);
        }

        if (imgs_kpts.size()==FLAGS_batch_size_keypoint || ((i==imsize-1)&&!imgs_kpts.empty()))
        {
272
          keypoint->Predict(imgs_kpts, center_bs, scale_bs, FLAGS_threshold, 0, 1, &result_kpts, &keypoint_times);
273 274 275 276 277 278 279 280 281 282 283
          imgs_kpts.clear();
          center_bs.clear();
          scale_bs.clear();
        }
      }
      cv::Mat out_im = VisualizeKptsResult(frame, result_kpts, colormap_kpts);
      video_out.write(out_im);
    }
    else{
      // Visualization result
      cv::Mat out_im = PaddleDetection::VisualizeResult(
284
          frame, out_result, labels, colormap, is_rbox);
285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334
      video_out.write(out_im);
    }

    frame_id += 1;
  }
  capture.release();
  video_out.release();
}

void PredictImage(const std::vector<std::string> all_img_paths,
                  const int batch_size,
                  const double threshold,
                  const bool run_benchmark,
                  PaddleDetection::ObjectDetector* det,
                  PaddleDetection::KeyPointDetector* keypoint,
                  const std::string& output_dir = "output") {
  std::vector<double> det_t = {0, 0, 0};
  int steps = ceil(float(all_img_paths.size()) / batch_size);
  int kpts_imgs = 0;
  std::vector<double> keypoint_t = {0, 0, 0};
  printf("total images = %d, batch_size = %d, total steps = %d\n",
                all_img_paths.size(), batch_size, steps);
  for (int idx = 0; idx < steps; idx++) {
    std::vector<cv::Mat> batch_imgs;
    int left_image_cnt = all_img_paths.size() - idx * batch_size;
    if (left_image_cnt > batch_size) {
      left_image_cnt = batch_size;
    }
    for (int bs = 0; bs < left_image_cnt; bs++) {
      std::string image_file_path = all_img_paths.at(idx * batch_size+bs);
      cv::Mat im = cv::imread(image_file_path, 1);
      batch_imgs.insert(batch_imgs.end(), im);
    }
    
    // Store all detected result
    std::vector<PaddleDetection::ObjectResult> result;
    std::vector<int> bbox_num;
    std::vector<double> det_times;

    // Store keypoint results
    std::vector<PaddleDetection::KeyPointResult> result_kpts;
    std::vector<cv::Mat> imgs_kpts;
    std::vector<std::vector<float>> center_bs;
    std::vector<std::vector<float>> scale_bs;
    std::vector<int> colormap_kpts = PaddleDetection::GenerateColorMap(20);

    bool is_rbox = false;
    if (run_benchmark) {
      det->Predict(batch_imgs, threshold, 10, 10, &result, &bbox_num,  &det_times);
    } else {
335
      det->Predict(batch_imgs, threshold, 0, 1, &result, &bbox_num, &det_times);
336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441
    }
    // get labels and colormap
    auto labels = det->GetLabelList();
    auto colormap = PaddleDetection::GenerateColorMap(labels.size());
    int item_start_idx = 0;
    for (int i = 0; i < left_image_cnt; i++) {
      cv::Mat im = batch_imgs[i];
      std::vector<PaddleDetection::ObjectResult> im_result;
      int detect_num = 0;
      for (int j = 0; j < bbox_num[i]; j++) {
        PaddleDetection::ObjectResult item = result[item_start_idx + j];
        if (item.confidence < threshold || item.class_id == -1) {
          continue;
        }
        detect_num += 1;
        im_result.push_back(item);
        if (item.rect.size() > 6){
          is_rbox = true;
          printf("class=%d confidence=%.4f rect=[%d %d %d %d %d %d %d %d]\n",
            item.class_id,
            item.confidence,
            item.rect[0],
            item.rect[1],
            item.rect[2],
            item.rect[3],
            item.rect[4],
            item.rect[5],
            item.rect[6],
            item.rect[7]);
        }
        else{
          printf("class=%d confidence=%.4f rect=[%d %d %d %d]\n",
            item.class_id,
            item.confidence,
            item.rect[0],
            item.rect[1],
            item.rect[2],
            item.rect[3]);
        }
      }
      std::cout << all_img_paths.at(idx * batch_size + i) << " The number of detected box: " << detect_num << std::endl;
      item_start_idx = item_start_idx + bbox_num[i];   
      
      std::vector<int> compression_params;
      compression_params.push_back(CV_IMWRITE_JPEG_QUALITY);
      compression_params.push_back(95);
      std::string output_path(output_dir);
      if (output_dir.rfind(OS_PATH_SEP) != output_dir.size() - 1) {
        output_path += OS_PATH_SEP;
      }
      std::string image_file_path = all_img_paths.at(idx * batch_size + i);
      if(keypoint)
      {
        int imsize = im_result.size();
        for (int i=0; i<imsize; i++){
          auto item = im_result[i];
          cv::Mat crop_img;
          std::vector<double> keypoint_times;
          std::vector<int> rect = {item.rect[0], item.rect[1], item.rect[2], item.rect[3]};
          std::vector<float> center;
          std::vector<float> scale;
          if(item.class_id == 0)
          {
            PaddleDetection::CropImg(im, crop_img, rect, center, scale);
            center_bs.emplace_back(center);
            scale_bs.emplace_back(scale);
            imgs_kpts.emplace_back(crop_img);
            kpts_imgs += 1;
          }

          if (imgs_kpts.size()==FLAGS_batch_size_keypoint || ((i==imsize-1)&&!imgs_kpts.empty()))
          {
            if (run_benchmark) {
              keypoint->Predict(imgs_kpts, center_bs, scale_bs, 0.5, 10, 10, &result_kpts, &keypoint_times);
            }
            else{
              keypoint->Predict(imgs_kpts, center_bs, scale_bs, 0.5, 0, 1, &result_kpts, &keypoint_times);
            }
            imgs_kpts.clear();
            center_bs.clear();
            scale_bs.clear();
            keypoint_t[0] += keypoint_times[0];
            keypoint_t[1] += keypoint_times[1];
            keypoint_t[2] += keypoint_times[2];
          }
        }
        std::string kpts_savepath = output_path + "keypoint_" + image_file_path.substr(image_file_path.find_last_of('/') + 1);
        cv::Mat kpts_vis_img = VisualizeKptsResult(im, result_kpts, colormap_kpts);
        cv::imwrite(kpts_savepath, kpts_vis_img, compression_params);
        printf("Visualized output saved as %s\n", kpts_savepath.c_str());
      }
      else{
        // Visualization result
        cv::Mat vis_img = PaddleDetection::VisualizeResult(
            im, im_result, labels, colormap, is_rbox);
        std::string det_savepath = output_path + image_file_path.substr(image_file_path.find_last_of('/') + 1);
        cv::imwrite(det_savepath, vis_img, compression_params);
        printf("Visualized output saved as %s\n", det_savepath.c_str());   
      }
    }
    
    det_t[0] += det_times[0];
    det_t[1] += det_times[1];
    det_t[2] += det_times[2];
  }
  PrintBenchmarkLog(det_t, all_img_paths.size());
442 443 444
  if (keypoint) {
    PrintKptsBenchmarkLog(keypoint_t, kpts_imgs);
  }
445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479
}

int main(int argc, char** argv) {
  // Parsing command-line
  google::ParseCommandLineFlags(&argc, &argv, true);
  if (FLAGS_model_dir.empty()
      || (FLAGS_image_file.empty() && FLAGS_image_dir.empty() && FLAGS_video_file.empty())) {
    std::cout << "Usage: ./main --model_dir=/PATH/TO/INFERENCE_MODEL/ (--model_dir_keypoint=/PATH/TO/INFERENCE_MODEL/)"
                << "--image_file=/PATH/TO/INPUT/IMAGE/" << std::endl;
    return -1;
  }
  if (!(FLAGS_run_mode == "fluid" || FLAGS_run_mode == "trt_fp32"
      || FLAGS_run_mode == "trt_fp16" || FLAGS_run_mode == "trt_int8")) {
    std::cout << "run_mode should be 'fluid', 'trt_fp32', 'trt_fp16' or 'trt_int8'.";
    return -1;
  }
  transform(FLAGS_device.begin(),FLAGS_device.end(),FLAGS_device.begin(),::toupper);
  if (!(FLAGS_device == "CPU" || FLAGS_device == "GPU" || FLAGS_device == "XPU")) {
    std::cout << "device should be 'CPU', 'GPU' or 'XPU'.";
    return -1;
  }
  if (FLAGS_use_gpu) {
    std::cout << "Deprecated, please use `--device` to set the device you want to run.";
    return -1;
  }
  // Load model and create a object detector
  PaddleDetection::ObjectDetector det(FLAGS_model_dir, FLAGS_device, FLAGS_use_mkldnn,
                        FLAGS_cpu_threads, FLAGS_run_mode, FLAGS_batch_size,FLAGS_gpu_id,
                        FLAGS_trt_min_shape, FLAGS_trt_max_shape, FLAGS_trt_opt_shape,
			FLAGS_trt_calib_mode);

  PaddleDetection::KeyPointDetector* keypoint = nullptr;
  if (!FLAGS_model_dir_keypoint.empty())
  {
      keypoint = new PaddleDetection::KeyPointDetector(FLAGS_model_dir_keypoint, FLAGS_device, FLAGS_use_mkldnn,
480
                        FLAGS_cpu_threads, FLAGS_run_mode, FLAGS_batch_size_keypoint, FLAGS_gpu_id,
481 482 483 484
                        FLAGS_trt_min_shape, FLAGS_trt_max_shape, FLAGS_trt_opt_shape,
			FLAGS_trt_calib_mode, FLAGS_use_dark);
  }
  // Do inference on input video or image
485 486 487
  if (!PathExists(FLAGS_output_dir)) {
      MkDirs(FLAGS_output_dir);
  }
488
  if (!FLAGS_video_file.empty() || FLAGS_camera_id != -1) {
489
    PredictVideo(FLAGS_video_file, &det, keypoint, FLAGS_output_dir);
490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511
  } else if (!FLAGS_image_file.empty() || !FLAGS_image_dir.empty()) {
    std::vector<std::string> all_img_paths;
    std::vector<cv::String> cv_all_img_paths;
    if (!FLAGS_image_file.empty()) {
      all_img_paths.push_back(FLAGS_image_file);
      if (FLAGS_batch_size > 1) {
        std::cout << "batch_size should be 1, when set `image_file`." << std::endl;
	return -1;
      }
    } else {
        cv::glob(FLAGS_image_dir, cv_all_img_paths);
        for (const auto & img_path : cv_all_img_paths) {
          all_img_paths.push_back(img_path);
        }
    }
    PredictImage(all_img_paths, FLAGS_batch_size, FLAGS_threshold,
		 FLAGS_run_benchmark, &det, keypoint, FLAGS_output_dir);
  }
  delete keypoint;
  keypoint = nullptr;
  return 0;
}