base_jde_tracker.py 8.5 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
This code is based on https://github.com/Zhongdao/Towards-Realtime-MOT/blob/master/tracker/multitracker.py
"""

import numpy as np
from collections import defaultdict
from collections import deque, OrderedDict
from ..matching import jde_matching as matching

__all__ = [
    'TrackState',
    'BaseTrack',
    'STrack',
    'joint_stracks',
    'sub_stracks',
    'remove_duplicate_stracks',
]


class TrackState(object):
    New = 0
    Tracked = 1
    Lost = 2
    Removed = 3


class BaseTrack(object):
    _count_dict = defaultdict(int)  # support single class and multi classes

    track_id = 0
    is_activated = False
    state = TrackState.New

    history = OrderedDict()
    features = []
49
    curr_feat = None
50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97
    score = 0
    start_frame = 0
    frame_id = 0
    time_since_update = 0

    # multi-camera
    location = (np.inf, np.inf)

    @property
    def end_frame(self):
        return self.frame_id

    @staticmethod
    def next_id(cls_id):
        BaseTrack._count_dict[cls_id] += 1
        return BaseTrack._count_dict[cls_id]

    # @even: reset track id
    @staticmethod
    def init_count(num_classes):
        """
        Initiate _count for all object classes
        :param num_classes:
        """
        for cls_id in range(num_classes):
            BaseTrack._count_dict[cls_id] = 0

    @staticmethod
    def reset_track_count(cls_id):
        BaseTrack._count_dict[cls_id] = 0

    def activate(self, *args):
        raise NotImplementedError

    def predict(self):
        raise NotImplementedError

    def update(self, *args, **kwargs):
        raise NotImplementedError

    def mark_lost(self):
        self.state = TrackState.Lost

    def mark_removed(self):
        self.state = TrackState.Removed


class STrack(BaseTrack):
W
wangguanzhong 已提交
98
    def __init__(self, tlwh, score, cls_id, buff_size=30, temp_feat=None):
99
        # wait activate
W
wangguanzhong 已提交
100
        self._tlwh = np.asarray(tlwh, dtype=np.float32)
F
Feng Ni 已提交
101 102 103 104
        self.score = score
        self.cls_id = cls_id
        self.track_len = 0

105 106 107 108
        self.kalman_filter = None
        self.mean, self.covariance = None, None
        self.is_activated = False

F
Feng Ni 已提交
109 110 111 112 113 114
        self.use_reid = True if temp_feat is not None else False
        if self.use_reid:
            self.smooth_feat = None
            self.update_features(temp_feat)
            self.features = deque([], maxlen=buff_size)
            self.alpha = 0.9
115 116

    def update_features(self, feat):
F
Feng Ni 已提交
117
        # L2 normalizing, this function has no use for BYTETracker
118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172
        feat /= np.linalg.norm(feat)
        self.curr_feat = feat
        if self.smooth_feat is None:
            self.smooth_feat = feat
        else:
            self.smooth_feat = self.alpha * self.smooth_feat + (1.0 - self.alpha
                                                                ) * feat
        self.features.append(feat)
        self.smooth_feat /= np.linalg.norm(self.smooth_feat)

    def predict(self):
        mean_state = self.mean.copy()
        if self.state != TrackState.Tracked:
            mean_state[7] = 0
        self.mean, self.covariance = self.kalman_filter.predict(mean_state,
                                                                self.covariance)

    @staticmethod
    def multi_predict(tracks, kalman_filter):
        if len(tracks) > 0:
            multi_mean = np.asarray([track.mean.copy() for track in tracks])
            multi_covariance = np.asarray(
                [track.covariance for track in tracks])
            for i, st in enumerate(tracks):
                if st.state != TrackState.Tracked:
                    multi_mean[i][7] = 0
            multi_mean, multi_covariance = kalman_filter.multi_predict(
                multi_mean, multi_covariance)
            for i, (mean, cov) in enumerate(zip(multi_mean, multi_covariance)):
                tracks[i].mean = mean
                tracks[i].covariance = cov

    def reset_track_id(self):
        self.reset_track_count(self.cls_id)

    def activate(self, kalman_filter, frame_id):
        """Start a new track"""
        self.kalman_filter = kalman_filter
        # update track id for the object class
        self.track_id = self.next_id(self.cls_id)
        self.mean, self.covariance = self.kalman_filter.initiate(
            self.tlwh_to_xyah(self._tlwh))

        self.track_len = 0
        self.state = TrackState.Tracked  # set flag 'tracked'

        if frame_id == 1:  # to record the first frame's detection result
            self.is_activated = True

        self.frame_id = frame_id
        self.start_frame = frame_id

    def re_activate(self, new_track, frame_id, new_id=False):
        self.mean, self.covariance = self.kalman_filter.update(
            self.mean, self.covariance, self.tlwh_to_xyah(new_track.tlwh))
F
Feng Ni 已提交
173 174
        if self.use_reid:
            self.update_features(new_track.curr_feat)
175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192
        self.track_len = 0
        self.state = TrackState.Tracked
        self.is_activated = True
        self.frame_id = frame_id
        if new_id:  # update track id for the object class
            self.track_id = self.next_id(self.cls_id)

    def update(self, new_track, frame_id, update_feature=True):
        self.frame_id = frame_id
        self.track_len += 1

        new_tlwh = new_track.tlwh
        self.mean, self.covariance = self.kalman_filter.update(
            self.mean, self.covariance, self.tlwh_to_xyah(new_tlwh))
        self.state = TrackState.Tracked  # set flag 'tracked'
        self.is_activated = True  # set flag 'activated'

        self.score = new_track.score
F
Feng Ni 已提交
193
        if update_feature and self.use_reid:
194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286
            self.update_features(new_track.curr_feat)

    @property
    def tlwh(self):
        """Get current position in bounding box format `(top left x, top left y,
                width, height)`.
        """
        if self.mean is None:
            return self._tlwh.copy()

        ret = self.mean[:4].copy()
        ret[2] *= ret[3]
        ret[:2] -= ret[2:] / 2
        return ret

    @property
    def tlbr(self):
        """Convert bounding box to format `(min x, min y, max x, max y)`, i.e.,
        `(top left, bottom right)`.
        """
        ret = self.tlwh.copy()
        ret[2:] += ret[:2]
        return ret

    @staticmethod
    def tlwh_to_xyah(tlwh):
        """Convert bounding box to format `(center x, center y, aspect ratio,
        height)`, where the aspect ratio is `width / height`.
        """
        ret = np.asarray(tlwh).copy()
        ret[:2] += ret[2:] / 2
        ret[2] /= ret[3]
        return ret

    def to_xyah(self):
        return self.tlwh_to_xyah(self.tlwh)

    @staticmethod
    def tlbr_to_tlwh(tlbr):
        ret = np.asarray(tlbr).copy()
        ret[2:] -= ret[:2]
        return ret

    @staticmethod
    def tlwh_to_tlbr(tlwh):
        ret = np.asarray(tlwh).copy()
        ret[2:] += ret[:2]
        return ret

    def __repr__(self):
        return 'OT_({}-{})_({}-{})'.format(self.cls_id, self.track_id,
                                           self.start_frame, self.end_frame)


def joint_stracks(tlista, tlistb):
    exists = {}
    res = []
    for t in tlista:
        exists[t.track_id] = 1
        res.append(t)
    for t in tlistb:
        tid = t.track_id
        if not exists.get(tid, 0):
            exists[tid] = 1
            res.append(t)
    return res


def sub_stracks(tlista, tlistb):
    stracks = {}
    for t in tlista:
        stracks[t.track_id] = t
    for t in tlistb:
        tid = t.track_id
        if stracks.get(tid, 0):
            del stracks[tid]
    return list(stracks.values())


def remove_duplicate_stracks(stracksa, stracksb):
    pdist = matching.iou_distance(stracksa, stracksb)
    pairs = np.where(pdist < 0.15)
    dupa, dupb = list(), list()
    for p, q in zip(*pairs):
        timep = stracksa[p].frame_id - stracksa[p].start_frame
        timeq = stracksb[q].frame_id - stracksb[q].start_frame
        if timep > timeq:
            dupb.append(q)
        else:
            dupa.append(p)
    resa = [t for i, t in enumerate(stracksa) if not i in dupa]
    resb = [t for i, t in enumerate(stracksb) if not i in dupb]
    return resa, resb