tracker.py 20.2 KB
Newer Older
G
George Ni 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

import os
import cv2
import glob
import paddle
import numpy as np
24
from collections import defaultdict
G
George Ni 已提交
25 26 27

from ppdet.core.workspace import create
from ppdet.utils.checkpoint import load_weight, load_pretrain_weight
G
George Ni 已提交
28
from ppdet.modeling.mot.utils import Detection, get_crops, scale_coords, clip_box
29
from ppdet.modeling.mot.utils import MOTTimer, load_det_results, write_mot_results, save_vis_results
G
George Ni 已提交
30

G
George Ni 已提交
31
from ppdet.metrics import Metric, MOTMetric, KITTIMOTMetric
32
from ppdet.metrics import MCMOTMetric
G
George Ni 已提交
33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77
import ppdet.utils.stats as stats

from .callbacks import Callback, ComposeCallback

from ppdet.utils.logger import setup_logger
logger = setup_logger(__name__)

__all__ = ['Tracker']


class Tracker(object):
    def __init__(self, cfg, mode='eval'):
        self.cfg = cfg
        assert mode.lower() in ['test', 'eval'], \
                "mode should be 'test' or 'eval'"
        self.mode = mode.lower()
        self.optimizer = None

        # build MOT data loader
        self.dataset = cfg['{}MOTDataset'.format(self.mode.capitalize())]

        # build model
        self.model = create(cfg.architecture)

        self.status = {}
        self.start_epoch = 0

        # initial default callbacks
        self._init_callbacks()

        # initial default metrics
        self._init_metrics()
        self._reset_metrics()

    def _init_callbacks(self):
        self._callbacks = []
        self._compose_callback = None

    def _init_metrics(self):
        if self.mode in ['test']:
            self._metrics = []
            return

        if self.cfg.metric == 'MOT':
            self._metrics = [MOTMetric(), ]
78 79
        elif self.cfg.metric == 'MCMOT':
            self._metrics = [MCMOTMetric(self.cfg.num_classes), ]
G
George Ni 已提交
80 81
        elif self.cfg.metric == 'KITTI':
            self._metrics = [KITTIMOTMetric(), ]
G
George Ni 已提交
82
        else:
83
            logger.warning("Metric not support for metric type {}".format(
G
George Ni 已提交
84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110
                self.cfg.metric))
            self._metrics = []

    def _reset_metrics(self):
        for metric in self._metrics:
            metric.reset()

    def register_callbacks(self, callbacks):
        callbacks = [h for h in list(callbacks) if h is not None]
        for c in callbacks:
            assert isinstance(c, Callback), \
                    "metrics shoule be instances of subclass of Metric"
        self._callbacks.extend(callbacks)
        self._compose_callback = ComposeCallback(self._callbacks)

    def register_metrics(self, metrics):
        metrics = [m for m in list(metrics) if m is not None]
        for m in metrics:
            assert isinstance(m, Metric), \
                    "metrics shoule be instances of subclass of Metric"
        self._metrics.extend(metrics)

    def load_weights_jde(self, weights):
        load_weight(self.model, weights, self.optimizer)

    def load_weights_sde(self, det_weights, reid_weights):
        if self.model.detector:
111 112 113 114
            load_weight(self.model.detector, det_weights)
            load_weight(self.model.reid, reid_weights)
        else:
            load_weight(self.model.reid, reid_weights, self.optimizer)
G
George Ni 已提交
115 116 117 118 119

    def _eval_seq_jde(self,
                      dataloader,
                      save_dir=None,
                      show_image=False,
120 121
                      frame_rate=30,
                      draw_threshold=0):
G
George Ni 已提交
122 123 124 125 126
        if save_dir:
            if not os.path.exists(save_dir): os.makedirs(save_dir)
        tracker = self.model.tracker
        tracker.max_time_lost = int(frame_rate / 30.0 * tracker.track_buffer)

127
        timer = MOTTimer()
G
George Ni 已提交
128 129 130
        frame_id = 0
        self.status['mode'] = 'track'
        self.model.eval()
131 132
        results = defaultdict(list)  # support single class and multi classes

G
George Ni 已提交
133 134 135 136 137 138 139
        for step_id, data in enumerate(dataloader):
            self.status['step_id'] = step_id
            if frame_id % 40 == 0:
                logger.info('Processing frame {} ({:.2f} fps)'.format(
                    frame_id, 1. / max(1e-5, timer.average_time)))
            # forward
            timer.tic()
140
            pred_dets, pred_embs = self.model(data)
G
George Ni 已提交
141

142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164
            pred_dets, pred_embs = pred_dets.numpy(), pred_embs.numpy()
            online_targets_dict = self.model.tracker.update(pred_dets,
                                                            pred_embs)
            online_tlwhs = defaultdict(list)
            online_scores = defaultdict(list)
            online_ids = defaultdict(list)
            for cls_id in range(self.cfg.num_classes):
                online_targets = online_targets_dict[cls_id]
                for t in online_targets:
                    tlwh = t.tlwh
                    tid = t.track_id
                    tscore = t.score
                    if tlwh[2] * tlwh[3] <= tracker.min_box_area: continue
                    if tracker.vertical_ratio > 0 and tlwh[2] / tlwh[
                            3] > tracker.vertical_ratio:
                        continue
                    online_tlwhs[cls_id].append(tlwh)
                    online_ids[cls_id].append(tid)
                    online_scores[cls_id].append(tscore)
                # save results
                results[cls_id].append(
                    (frame_id + 1, online_tlwhs[cls_id], online_scores[cls_id],
                     online_ids[cls_id]))
G
George Ni 已提交
165

166 167 168 169
            timer.toc()
            save_vis_results(data, frame_id, online_ids, online_tlwhs,
                             online_scores, timer.average_time, show_image,
                             save_dir, self.cfg.num_classes)
G
George Ni 已提交
170 171 172 173 174 175 176 177 178
            frame_id += 1

        return results, frame_id, timer.average_time, timer.calls

    def _eval_seq_sde(self,
                      dataloader,
                      save_dir=None,
                      show_image=False,
                      frame_rate=30,
179
                      scaled=False,
180 181
                      det_file='',
                      draw_threshold=0):
G
George Ni 已提交
182 183 184 185
        if save_dir:
            if not os.path.exists(save_dir): os.makedirs(save_dir)
        use_detector = False if not self.model.detector else True

186
        timer = MOTTimer()
F
Feng Ni 已提交
187
        results = defaultdict(list)
G
George Ni 已提交
188 189 190 191 192 193 194 195 196 197 198 199 200 201 202
        frame_id = 0
        self.status['mode'] = 'track'
        self.model.eval()
        self.model.reid.eval()
        if not use_detector:
            dets_list = load_det_results(det_file, len(dataloader))
            logger.info('Finish loading detection results file {}.'.format(
                det_file))

        for step_id, data in enumerate(dataloader):
            self.status['step_id'] = step_id
            if frame_id % 40 == 0:
                logger.info('Processing frame {} ({:.2f} fps)'.format(
                    frame_id, 1. / max(1e-5, timer.average_time)))

G
George Ni 已提交
203 204 205 206
            ori_image = data['ori_image']
            input_shape = data['image'].shape[2:]
            im_shape = data['im_shape']
            scale_factor = data['scale_factor']
207 208

            # forward
G
George Ni 已提交
209 210 211 212 213
            timer.tic()
            if not use_detector:
                dets = dets_list[frame_id]
                bbox_tlwh = paddle.to_tensor(dets['bbox'], dtype='float32')
                if bbox_tlwh.shape[0] > 0:
214 215 216 217 218
                    # detector outputs: pred_cls_ids, pred_scores, pred_bboxes
                    pred_cls_ids = paddle.to_tensor(
                        dets['cls_id'], dtype='float32').unsqueeze(1)
                    pred_scores = paddle.to_tensor(
                        dets['score'], dtype='float32').unsqueeze(1)
G
George Ni 已提交
219 220 221 222 223
                    pred_bboxes = paddle.concat(
                        (bbox_tlwh[:, 0:2],
                         bbox_tlwh[:, 2:4] + bbox_tlwh[:, 0:2]),
                        axis=1)
                else:
224 225 226 227 228
                    logger.warning(
                        'Frame {} has not object, try to modify score threshold.'.
                        format(frame_id))
                    frame_id += 1
                    continue
G
George Ni 已提交
229 230 231
            else:
                outs = self.model.detector(data)
                if outs['bbox_num'] > 0:
232 233 234
                    # detector outputs: pred_cls_ids, pred_scores, pred_bboxes
                    pred_cls_ids = outs['bbox'][:, 0:1]
                    pred_scores = outs['bbox'][:, 1:2]
235
                    if not scaled:
236 237 238
                        # scaled means whether the coords after detector outputs
                        # have been scaled back to the original image, set True 
                        # in general detector, set False in JDE YOLOv3.
239 240 241 242 243
                        pred_bboxes = scale_coords(outs['bbox'][:, 2:],
                                                   input_shape, im_shape,
                                                   scale_factor)
                    else:
                        pred_bboxes = outs['bbox'][:, 2:]
G
George Ni 已提交
244
                else:
245 246 247 248 249
                    logger.warning(
                        'Frame {} has not object, try to modify score threshold.'.
                        format(frame_id))
                    frame_id += 1
                    continue
G
George Ni 已提交
250

251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267
            pred_xyxys, keep_idx = clip_box(pred_bboxes, input_shape, im_shape,
                                            scale_factor)
            pred_scores = paddle.gather_nd(pred_scores, keep_idx).unsqueeze(1)
            pred_cls_ids = paddle.gather_nd(pred_cls_ids, keep_idx).unsqueeze(1)
            pred_tlwhs = paddle.concat(
                (pred_xyxys[:, 0:2],
                 pred_xyxys[:, 2:4] - pred_xyxys[:, 0:2] + 1),
                axis=1)
            pred_dets = paddle.concat(
                (pred_tlwhs, pred_scores, pred_cls_ids), axis=1)

            tracker = self.model.tracker
            crops = get_crops(
                pred_xyxys,
                ori_image,
                w=tracker.input_size[0],
                h=tracker.input_size[1])
G
George Ni 已提交
268 269 270
            crops = paddle.to_tensor(crops)

            data.update({'crops': crops})
271
            pred_embs = self.model(data)
F
Feng Ni 已提交
272
            pred_dets, pred_embs = pred_dets.numpy(), pred_embs.numpy()
273 274 275 276 277 278 279

            tracker.predict()
            online_targets = tracker.update(pred_dets, pred_embs)

            online_tlwhs, online_scores, online_ids = [], [], []
            for t in online_targets:
                if not t.is_confirmed() or t.time_since_update > 1:
G
George Ni 已提交
280
                    continue
281 282 283 284 285 286 287 288 289 290 291
                tlwh = t.to_tlwh()
                tscore = t.score
                tid = t.track_id
                if tscore < draw_threshold: continue
                if tlwh[2] * tlwh[3] <= tracker.min_box_area: continue
                if tracker.vertical_ratio > 0 and tlwh[2] / tlwh[
                        3] > tracker.vertical_ratio:
                    continue
                online_tlwhs.append(tlwh)
                online_scores.append(tscore)
                online_ids.append(tid)
G
George Ni 已提交
292 293 294
            timer.toc()

            # save results
F
Feng Ni 已提交
295
            results[0].append(
G
George Ni 已提交
296
                (frame_id + 1, online_tlwhs, online_scores, online_ids))
297 298 299
            save_vis_results(data, frame_id, online_ids, online_tlwhs,
                             online_scores, timer.average_time, show_image,
                             save_dir, self.cfg.num_classes)
G
George Ni 已提交
300 301 302 303 304 305 306 307 308 309 310 311 312
            frame_id += 1

        return results, frame_id, timer.average_time, timer.calls

    def mot_evaluate(self,
                     data_root,
                     seqs,
                     output_dir,
                     data_type='mot',
                     model_type='JDE',
                     save_images=False,
                     save_videos=False,
                     show_image=False,
313
                     scaled=False,
G
George Ni 已提交
314 315 316 317
                     det_results_dir=''):
        if not os.path.exists(output_dir): os.makedirs(output_dir)
        result_root = os.path.join(output_dir, 'mot_results')
        if not os.path.exists(result_root): os.makedirs(result_root)
318 319
        assert data_type in ['mot', 'mcmot', 'kitti'], \
            "data_type should be 'mot', 'mcmot' or 'kitti'"
G
George Ni 已提交
320 321 322 323 324 325 326
        assert model_type in ['JDE', 'DeepSORT', 'FairMOT'], \
            "model_type should be 'JDE', 'DeepSORT' or 'FairMOT'"

        # run tracking
        n_frame = 0
        timer_avgs, timer_calls = [], []
        for seq in seqs:
327 328 329 330
            infer_dir = os.path.join(data_root, seq)
            if not os.path.exists(infer_dir) or not os.path.isdir(infer_dir):
                logger.warning("Seq {} error, {} has no images.".format(
                    seq, infer_dir))
G
George Ni 已提交
331
                continue
332 333 334 335
            if os.path.exists(os.path.join(infer_dir, 'img1')):
                infer_dir = os.path.join(infer_dir, 'img1')

            frame_rate = 30
G
George Ni 已提交
336
            seqinfo = os.path.join(data_root, seq, 'seqinfo.ini')
337 338 339 340
            if os.path.exists(seqinfo):
                meta_info = open(seqinfo).read()
                frame_rate = int(meta_info[meta_info.find('frameRate') + 10:
                                           meta_info.find('\nseqLength')])
G
George Ni 已提交
341

G
George Ni 已提交
342 343 344 345
            save_dir = os.path.join(output_dir, 'mot_outputs',
                                    seq) if save_images or save_videos else None
            logger.info('start seq: {}'.format(seq))

346
            self.dataset.set_images(self.get_infer_images(infer_dir))
G
George Ni 已提交
347 348 349
            dataloader = create('EvalMOTReader')(self.dataset, 0)

            result_filename = os.path.join(result_root, '{}.txt'.format(seq))
350

G
George Ni 已提交
351 352 353 354 355 356 357 358 359 360 361 362 363
            with paddle.no_grad():
                if model_type in ['JDE', 'FairMOT']:
                    results, nf, ta, tc = self._eval_seq_jde(
                        dataloader,
                        save_dir=save_dir,
                        show_image=show_image,
                        frame_rate=frame_rate)
                elif model_type in ['DeepSORT']:
                    results, nf, ta, tc = self._eval_seq_sde(
                        dataloader,
                        save_dir=save_dir,
                        show_image=show_image,
                        frame_rate=frame_rate,
364
                        scaled=scaled,
G
George Ni 已提交
365 366 367 368
                        det_file=os.path.join(det_results_dir,
                                              '{}.txt'.format(seq)))
                else:
                    raise ValueError(model_type)
G
George Ni 已提交
369

370 371
            write_mot_results(result_filename, results, data_type,
                              self.cfg.num_classes)
G
George Ni 已提交
372 373 374 375 376
            n_frame += nf
            timer_avgs.append(ta)
            timer_calls.append(tc)

            if save_videos:
G
George Ni 已提交
377 378
                output_video_path = os.path.join(save_dir, '..',
                                                 '{}_vis.mp4'.format(seq))
F
Feng Ni 已提交
379
                cmd_str = 'ffmpeg -f image2 -i {}/%05d.jpg {}'.format(
G
George Ni 已提交
380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421
                    save_dir, output_video_path)
                os.system(cmd_str)
                logger.info('Save video in {}.'.format(output_video_path))

            logger.info('Evaluate seq: {}'.format(seq))
            # update metrics
            for metric in self._metrics:
                metric.update(data_root, seq, data_type, result_root,
                              result_filename)

        timer_avgs = np.asarray(timer_avgs)
        timer_calls = np.asarray(timer_calls)
        all_time = np.dot(timer_avgs, timer_calls)
        avg_time = all_time / np.sum(timer_calls)
        logger.info('Time elapsed: {:.2f} seconds, FPS: {:.2f}'.format(
            all_time, 1.0 / avg_time))

        # accumulate metric to log out
        for metric in self._metrics:
            metric.accumulate()
            metric.log()
        # reset metric states for metric may performed multiple times
        self._reset_metrics()

    def get_infer_images(self, infer_dir):
        assert infer_dir is None or os.path.isdir(infer_dir), \
            "{} is not a directory".format(infer_dir)
        images = set()
        assert os.path.isdir(infer_dir), \
            "infer_dir {} is not a directory".format(infer_dir)
        exts = ['jpg', 'jpeg', 'png', 'bmp']
        exts += [ext.upper() for ext in exts]
        for ext in exts:
            images.update(glob.glob('{}/*.{}'.format(infer_dir, ext)))
        images = list(images)
        images.sort()
        assert len(images) > 0, "no image found in {}".format(infer_dir)
        logger.info("Found {} inference images in total.".format(len(images)))
        return images

    def mot_predict(self,
                    video_file,
422
                    frame_rate,
G
George Ni 已提交
423
                    image_dir,
G
George Ni 已提交
424 425 426 427 428 429
                    output_dir,
                    data_type='mot',
                    model_type='JDE',
                    save_images=False,
                    save_videos=True,
                    show_image=False,
430
                    scaled=False,
431 432
                    det_results_dir='',
                    draw_threshold=0.5):
G
George Ni 已提交
433 434 435 436 437 438 439
        assert video_file is not None or image_dir is not None, \
            "--video_file or --image_dir should be set."
        assert video_file is None or os.path.isfile(video_file), \
                "{} is not a file".format(video_file)
        assert image_dir is None or os.path.isdir(image_dir), \
                "{} is not a directory".format(image_dir)

G
George Ni 已提交
440 441 442
        if not os.path.exists(output_dir): os.makedirs(output_dir)
        result_root = os.path.join(output_dir, 'mot_results')
        if not os.path.exists(result_root): os.makedirs(result_root)
443 444
        assert data_type in ['mot', 'mcmot', 'kitti'], \
            "data_type should be 'mot', 'mcmot' or 'kitti'"
G
George Ni 已提交
445 446 447
        assert model_type in ['JDE', 'DeepSORT', 'FairMOT'], \
            "model_type should be 'JDE', 'DeepSORT' or 'FairMOT'"

G
George Ni 已提交
448 449 450
        # run tracking        
        if video_file:
            seq = video_file.split('/')[-1].split('.')[0]
451
            self.dataset.set_video(video_file, frame_rate)
G
George Ni 已提交
452 453 454 455 456 457 458 459 460 461 462 463 464
            logger.info('Starting tracking video {}'.format(video_file))
        elif image_dir:
            seq = image_dir.split('/')[-1].split('.')[0]
            images = [
                '{}/{}'.format(image_dir, x) for x in os.listdir(image_dir)
            ]
            images.sort()
            self.dataset.set_images(images)
            logger.info('Starting tracking folder {}, found {} images'.format(
                image_dir, len(images)))
        else:
            raise ValueError('--video_file or --image_dir should be set.')

G
George Ni 已提交
465 466 467 468 469
        save_dir = os.path.join(output_dir, 'mot_outputs',
                                seq) if save_images or save_videos else None

        dataloader = create('TestMOTReader')(self.dataset, 0)
        result_filename = os.path.join(result_root, '{}.txt'.format(seq))
470 471
        if frame_rate == -1:
            frame_rate = self.dataset.frame_rate
G
George Ni 已提交
472

G
George Ni 已提交
473 474 475 476 477 478
        with paddle.no_grad():
            if model_type in ['JDE', 'FairMOT']:
                results, nf, ta, tc = self._eval_seq_jde(
                    dataloader,
                    save_dir=save_dir,
                    show_image=show_image,
479 480
                    frame_rate=frame_rate,
                    draw_threshold=draw_threshold)
G
George Ni 已提交
481 482 483 484 485 486
            elif model_type in ['DeepSORT']:
                results, nf, ta, tc = self._eval_seq_sde(
                    dataloader,
                    save_dir=save_dir,
                    show_image=show_image,
                    frame_rate=frame_rate,
487
                    scaled=scaled,
G
George Ni 已提交
488
                    det_file=os.path.join(det_results_dir,
489 490
                                          '{}.txt'.format(seq)),
                    draw_threshold=draw_threshold)
G
George Ni 已提交
491 492
            else:
                raise ValueError(model_type)
G
George Ni 已提交
493

494 495
        write_mot_results(result_filename, results, data_type,
                          self.cfg.num_classes)
G
George Ni 已提交
496

G
George Ni 已提交
497
        if save_videos:
G
George Ni 已提交
498 499
            output_video_path = os.path.join(save_dir, '..',
                                             '{}_vis.mp4'.format(seq))
F
Feng Ni 已提交
500
            cmd_str = 'ffmpeg -f image2 -i {}/%05d.jpg {}'.format(
G
George Ni 已提交
501 502 503
                save_dir, output_video_path)
            os.system(cmd_str)
            logger.info('Save video in {}'.format(output_video_path))