You need to sign in or sign up before continuing.
ppyolo_tiny.yml 2.8 KB
Newer Older
K
Kaipeng Deng 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135
architecture: YOLOv3
use_gpu: true
max_iters: 250000
log_smooth_window: 20
log_iter: 20
save_dir: output
snapshot_iter: 10000
metric: COCO
pretrain_weights: https://paddle-imagenet-models-name.bj.bcebos.com/ResNet18_vd_pretrained.tar
weights: output/ppyolo_tiny/model_final
num_classes: 80
use_fine_grained_loss: true
use_ema: true
ema_decay: 0.9998

YOLOv3:
  backbone: ResNet
  yolo_head: YOLOv3Head
  use_fine_grained_loss: true

ResNet:
  norm_type: sync_bn
  freeze_at: 0
  freeze_norm: false
  norm_decay: 0.
  depth: 18
  feature_maps: [4, 5]
  variant: d

YOLOv3Head:
  anchor_masks: [[3, 4, 5], [0, 1, 2]]
  anchors: [[10, 14], [23, 27], [37, 58],
            [81, 82], [135, 169], [344, 319]]
  norm_decay: 0.
  conv_block_num: 0
  scale_x_y: 1.05
  yolo_loss: YOLOv3Loss
  nms: MatrixNMS
  drop_block: true

YOLOv3Loss:
  batch_size: 32
  ignore_thresh: 0.7
  scale_x_y: 1.05
  label_smooth: false
  use_fine_grained_loss: true
  iou_loss: IouLoss

IouLoss:
  loss_weight: 2.5
  max_height: 608
  max_width: 608

MatrixNMS:
    background_label: -1
    keep_top_k: 100
    normalized: false
    score_threshold: 0.01
    post_threshold: 0.01

LearningRate:
  base_lr: 0.004
  schedulers:
  - !PiecewiseDecay
    gamma: 0.1
    milestones:
    - 150000
    - 200000
  - !LinearWarmup
    start_factor: 0.
    steps: 4000

OptimizerBuilder:
  optimizer:
    momentum: 0.9
    type: Momentum
  regularizer:
    factor: 0.0005
    type: L2

_READER_: 'ppyolo_reader.yml'
TrainReader:
  inputs_def:
    fields: ['image', 'gt_bbox', 'gt_class', 'gt_score']
    num_max_boxes: 50
  dataset:
    !COCODataSet
      image_dir: train2017
      anno_path: annotations/instances_train2017.json
      dataset_dir: train_data/dataset/coco
      with_background: false
  sample_transforms:
    - !DecodeImage
      to_rgb: True
      with_mixup: True
    - !MixupImage
      alpha: 1.5
      beta: 1.5
    - !ColorDistort {}
    - !RandomExpand
      fill_value: [123.675, 116.28, 103.53]
    - !RandomCrop {}
    - !RandomFlipImage
      is_normalized: false
    - !NormalizeBox {}
    - !PadBox
      num_max_boxes: 50
    - !BboxXYXY2XYWH {}
  batch_transforms:
  - !RandomShape
    sizes: [320, 352, 384, 416, 448, 480, 512, 544, 576, 608]
    random_inter: True
  - !NormalizeImage
    mean: [0.485, 0.456, 0.406]
    std: [0.229, 0.224, 0.225]
    is_scale: True
    is_channel_first: false
  - !Permute
    to_bgr: false
    channel_first: True
  # Gt2YoloTarget is only used when use_fine_grained_loss set as true,
  # this operator will be deleted automatically if use_fine_grained_loss
  # is set as false
  - !Gt2YoloTarget
    anchor_masks: [[3, 4, 5], [0, 1, 2]]
    anchors: [[10, 14], [23, 27], [37, 58],
              [81, 82], [135, 169], [344, 319]]
    downsample_ratios: [32, 16]
  batch_size: 32
  shuffle: true
  mixup_epoch: 500
  drop_last: true
  worker_num: 16
  bufsize: 8
  use_process: true