test_recognize_digits.py 4.8 KB
Newer Older
Y
Yang Yu 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserve.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from __future__ import print_function
import argparse
import paddle.v2.fluid as fluid
import paddle.v2 as paddle
import sys
Y
Yang Yu 已提交
19
import numpy
Y
Yang Yu 已提交
20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103


def parse_arg():
    parser = argparse.ArgumentParser()
    parser.add_argument(
        "nn_type",
        help="The neural network type, in ['mlp', 'conv']",
        type=str,
        choices=['mlp', 'conv'])
    parser.add_argument(
        "--parallel",
        help='Run in parallel or not',
        default=False,
        action="store_true")
    parser.add_argument(
        "--use_cuda",
        help="Run the program by using CUDA",
        default=False,
        action="store_true")
    return parser.parse_args()


BATCH_SIZE = 64


def loss_net(hidden, label):
    prediction = fluid.layers.fc(input=hidden, size=10, act='softmax')
    loss = fluid.layers.cross_entropy(input=prediction, label=label)
    return fluid.layers.mean(x=loss), fluid.layers.accuracy(
        input=prediction, label=label)


def mlp(img, label):
    hidden = fluid.layers.fc(input=img, size=200, act='tanh')
    hidden = fluid.layers.fc(input=hidden, size=200, act='tanh')
    return loss_net(hidden, label)


def conv_net(img, label):
    conv_pool_1 = fluid.nets.simple_img_conv_pool(
        input=img,
        filter_size=5,
        num_filters=20,
        pool_size=2,
        pool_stride=2,
        act="relu")
    conv_pool_2 = fluid.nets.simple_img_conv_pool(
        input=conv_pool_1,
        filter_size=5,
        num_filters=50,
        pool_size=2,
        pool_stride=2,
        act="relu")
    return loss_net(conv_pool_2, label)


def main():
    args = parse_arg()
    print("recognize digits with args: {0}".format(" ".join(sys.argv[1:])))

    img = fluid.layers.data(name='img', shape=[1, 28, 28], dtype='float32')
    label = fluid.layers.data(name='label', shape=[1], dtype='int64')

    if args.nn_type == 'mlp':
        net_conf = mlp
    else:
        net_conf = conv_net

    if args.parallel:
        places = fluid.layers.get_places()
        pd = fluid.layers.ParallelDo(places)
        with pd.do():
            img_ = pd.read_input(img)
            label_ = pd.read_input(label)
            for o in net_conf(img_, label_):
                pd.write_output(o)

        avg_loss, acc = pd()
        # get mean loss and acc through every devices.
        avg_loss = fluid.layers.mean(x=avg_loss)
        acc = fluid.layers.mean(x=acc)
    else:
        avg_loss, acc = net_conf(img, label)

Y
Yang Yu 已提交
104 105
    test_program = fluid.default_main_program().clone()

Y
Yang Yu 已提交
106 107 108 109 110 111 112 113 114 115 116 117
    optimizer = fluid.optimizer.Adam(learning_rate=0.001)
    optimizer.minimize(avg_loss)

    place = fluid.CUDAPlace(0) if args.use_cuda else fluid.CPUPlace()

    exe = fluid.Executor(place)
    exe.run(fluid.default_startup_program())

    train_reader = paddle.batch(
        paddle.reader.shuffle(
            paddle.dataset.mnist.train(), buf_size=500),
        batch_size=BATCH_SIZE)
Y
Yang Yu 已提交
118 119
    test_reader = paddle.batch(
        paddle.dataset.mnist.test(), batch_size=BATCH_SIZE)
Y
Yang Yu 已提交
120 121 122 123 124 125 126
    feeder = fluid.DataFeeder(feed_list=[img, label], place=place)

    PASS_NUM = 100
    for pass_id in range(PASS_NUM):
        for batch_id, data in enumerate(train_reader()):
            need_check = (batch_id + 1) % 10 == 0

Y
Yang Yu 已提交
127 128
            # train a mini-batch, fetch nothing
            exe.run(feed=feeder.feed(data))
Y
Yang Yu 已提交
129
            if need_check:
Y
Yang Yu 已提交
130 131 132 133 134 135 136 137 138 139 140 141
                acc_set = []
                avg_loss_set = []
                for test_data in test_reader():
                    acc_np, avg_loss_np = exe.run(program=test_program,
                                                  feed=feeder.feed(test_data),
                                                  fetch_list=[acc, avg_loss])
                    acc_set.append(float(acc_np))
                    avg_loss_set.append(float(avg_loss_np))
                # get test acc and loss
                acc_val = numpy.array(acc_set).mean()
                avg_loss_val = numpy.array(avg_loss_set).mean()
                if float(acc_val) > 0.85:  # test acc > 85%
Y
Yang Yu 已提交
142 143 144
                    exit(0)
                else:
                    print(
Y
Yang Yu 已提交
145
                        'PassID {0:1}, BatchID {1:04}, Test Loss {2:2.2}, Acc {3:2.2}'.
Y
Yang Yu 已提交
146
                        format(pass_id, batch_id + 1,
Y
Yang Yu 已提交
147
                               float(avg_loss_val), float(acc_val)))
Y
Yang Yu 已提交
148 149 150 151


if __name__ == '__main__':
    main()