pybind.cc 19.9 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
2 3 4 5 6

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

7
http://www.apache.org/licenses/LICENSE-2.0
8 9 10 11 12 13 14

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

Y
Yi Wang 已提交
15
#include "paddle/fluid/pybind/protobuf.h"
Q
qijun 已提交
16

Q
QI JUN 已提交
17
#include <mutex>  // for call_once
18
#include <unordered_map>
Y
Yi Wang 已提交
19
#include "paddle/fluid/framework/backward.h"
20
#include "paddle/fluid/framework/channel.h"
Y
Yi Wang 已提交
21 22 23 24 25 26 27 28
#include "paddle/fluid/framework/executor.h"
#include "paddle/fluid/framework/feed_fetch_method.h"
#include "paddle/fluid/framework/framework.pb.h"
#include "paddle/fluid/framework/init.h"
#include "paddle/fluid/framework/lod_rank_table.h"
#include "paddle/fluid/framework/lod_tensor.h"
#include "paddle/fluid/framework/lod_tensor_array.h"
#include "paddle/fluid/framework/prune.h"
Y
Refine  
Yu Yang 已提交
29
#include "paddle/fluid/framework/reader.h"
Y
Yi Wang 已提交
30 31 32 33
#include "paddle/fluid/framework/selected_rows.h"
#include "paddle/fluid/operators/cond_op.h"
#include "paddle/fluid/operators/net_op.h"
#include "paddle/fluid/platform/enforce.h"
34
#include "paddle/fluid/platform/gpu_info.h"
Y
Yi Wang 已提交
35 36 37 38 39
#include "paddle/fluid/platform/place.h"
#include "paddle/fluid/platform/profiler.h"
#include "paddle/fluid/pybind/const_value.h"
#include "paddle/fluid/pybind/exception.h"
#include "paddle/fluid/pybind/pybind.h"
Y
Yu Yang 已提交
40
#include "paddle/fluid/pybind/recordio.h"
Y
Yi Wang 已提交
41
#include "paddle/fluid/pybind/tensor_py.h"
Y
Yu Yang 已提交
42

43
#include "paddle/fluid/string/to_string.h"
44

D
Dong Zhihong 已提交
45
#ifdef PADDLE_WITH_CUDA
Y
Yi Wang 已提交
46 47 48
#include "paddle/fluid/operators/nccl/nccl_gpu_common.h"
#include "paddle/fluid/platform/cuda_profiler.h"
#include "paddle/fluid/platform/gpu_info.h"
D
Dong Zhihong 已提交
49 50
#endif

Q
Qiao Longfei 已提交
51 52 53
// disable auto conversion to list in Python
PYBIND11_MAKE_OPAQUE(paddle::framework::LoDTensorArray);

54
namespace paddle {
55
namespace pybind {
56
bool IsCompiledWithCUDA() {
57
#ifndef PADDLE_WITH_CUDA
Q
qijun 已提交
58 59 60 61 62 63
  return false;
#else
  return true;
#endif
}

64 65
PYBIND11_PLUGIN(core) {
  py::module m("core", "C++ core of PaddlePaddle");
66

67 68 69 70
  // using framework in this function. Since it is inside a function, it will
  // not cause namespace pollution.
  using namespace paddle::framework;  // NOLINT

Y
Yu Yang 已提交
71 72
  BindException(m);

73 74 75
  py::class_<Tensor>(m, "Tensor", py::buffer_protocol())
      .def_buffer(
          [](Tensor &self) -> py::buffer_info { return CastToPyBuffer(self); })
Y
Yu Yang 已提交
76
      .def("get_dims",
77
           [](const Tensor &self) { return vectorize(self.dims()); })
Y
Yu Yang 已提交
78
      .def("set_dims",
Q
qijun 已提交
79
           [](Tensor &self, const std::vector<int64_t> &dim) {
Y
Yu Yang 已提交
80
             self.Resize(make_ddim(dim));
Y
Yu Yang 已提交
81
           })
D
dzhwinter 已提交
82 83 84 85
      .def("set_layout",
           [](Tensor &self, const std::string &layout) {
             self.set_layout(StringToDataLayout(layout));
           })
Y
Yu Yang 已提交
86
      .def("alloc_float",
D
dzhwinter 已提交
87
           [](Tensor &self, paddle::platform::CUDAPlace &place) {
Q
qijun 已提交
88
             self.mutable_data<float>(place);
Y
Yu Yang 已提交
89
           })
Q
qijun 已提交
90
      .def("alloc_float",
Y
Yu Yang 已提交
91
           [](Tensor &self, paddle::platform::CPUPlace &place) {
Q
qijun 已提交
92
             self.mutable_data<float>(place);
Y
Yu Yang 已提交
93 94
           })
      .def("alloc_int",
Y
Yu Yang 已提交
95
           [](Tensor &self, paddle::platform::CPUPlace &place) {
Q
qijun 已提交
96
             self.mutable_data<int>(place);
Y
Yu Yang 已提交
97
           })
Q
qijun 已提交
98
      .def("alloc_int",
D
dzhwinter 已提交
99
           [](Tensor &self, paddle::platform::CUDAPlace &place) {
Q
qijun 已提交
100
             self.mutable_data<int>(place);
Q
qijun 已提交
101
           })
Y
Yu Yang 已提交
102 103
      .def("set", PyCPUTensorSetFromArray<float>)
      .def("set", PyCPUTensorSetFromArray<int>)
104
      .def("set", PyCPUTensorSetFromArray<double>)
105
      .def("set", PyCPUTensorSetFromArray<int64_t>)
Y
Yu Yang 已提交
106
      .def("set", PyCPUTensorSetFromArray<bool>)
107
      .def("set", PyCPUTensorSetFromArray<uint16_t>)
108
#ifdef PADDLE_WITH_CUDA
Y
Yu Yang 已提交
109 110
      .def("set", PyCUDATensorSetFromArray<float>)
      .def("set", PyCUDATensorSetFromArray<int>)
111
      .def("set", PyCUDATensorSetFromArray<double>)
112
      .def("set", PyCUDATensorSetFromArray<int64_t>)
Y
Yu Yang 已提交
113
      .def("set", PyCUDATensorSetFromArray<bool>)
114
      .def("set", PyCUDATensorSetFromArray<uint16_t>)
Q
qijun 已提交
115
#endif
116
      .def("shape", [](Tensor &self) { return vectorize(self.dims()); })
117 118 119 120 121
      .def("set_float_element", TensorSetElement<float>)
      .def("get_float_element", TensorGetElement<float>)
      .def("set_double_element", TensorSetElement<double>)
      .def("get_double_element", TensorGetElement<double>)
      .def("dtype", [](Tensor &self) { return ToDataType(self.type()); });
Y
Yu Yang 已提交
122

123
  py::class_<LoDTensor, Tensor>(m, "LoDTensor")
124 125
      .def_buffer(
          [](Tensor &self) -> py::buffer_info { return CastToPyBuffer(self); })
126 127 128
      .def(
          "__init__",
          [](LoDTensor &instance, const std::vector<std::vector<size_t>> &lod) {
D
dzhwinter 已提交
129 130 131 132
            LoD new_lod;
            new_lod.reserve(lod.size());
            std::copy(lod.begin(), lod.end(), std::back_inserter(new_lod));
            new (&instance) LoDTensor(new_lod);
133
          })
Y
Yu Yang 已提交
134
      .def("__init__", [](LoDTensor &instance) { new (&instance) LoDTensor(); })
D
dangqingqing 已提交
135
      .def("set_lod",
136
           [](LoDTensor &self, const std::vector<std::vector<size_t>> &lod) {
Y
Yu Yang 已提交
137
             LoD new_lod;
138 139 140
             new_lod.reserve(lod.size());
             std::copy(lod.begin(), lod.end(), std::back_inserter(new_lod));
             self.set_lod(new_lod);
D
dangqingqing 已提交
141
           })
142
      .def("lod", [](LoDTensor &self) -> std::vector<std::vector<size_t>> {
D
dzhwinter 已提交
143 144 145 146 147
        auto lod = self.lod();
        std::vector<std::vector<size_t>> new_lod;
        new_lod.reserve(lod.size());
        std::copy(lod.begin(), lod.end(), std::back_inserter(new_lod));
        return new_lod;
D
dangqingqing 已提交
148 149
      });

Q
qijun 已提交
150 151 152 153 154 155 156 157 158 159 160 161 162
  py::class_<SelectedRows>(m, "SelectedRows")
      .def("__init__",
           [](SelectedRows &instance) { new (&instance) SelectedRows(); })
      .def("__init__",
           [](SelectedRows &instance, const std::vector<int64_t> rows,
              const int64_t &height) {
             new (&instance) SelectedRows(rows, height);
           })
      .def("get_tensor",
           [](SelectedRows &self) { return self.mutable_value(); },
           py::return_value_policy::reference)
      .def("set_height", &SelectedRows::set_height)
      .def("height", &SelectedRows::height)
Q
qijun 已提交
163 164 165 166 167 168 169 170 171
      .def("set_rows",
           [](SelectedRows &self, std::vector<int64_t> rows) {
#ifndef PADDLE_WITH_CUDA
             self.set_rows(rows);
#else
        Vector<int64_t> new_rows(rows);
        self.set_rows(new_rows);
#endif
           })
172 173 174 175 176 177 178 179 180 181 182
      .def("rows", [](SelectedRows &self) {
#ifndef PADDLE_WITH_CUDA
        return self.rows();
#else
         auto rows = self.rows();
         std::vector<int64_t> new_rows;
         new_rows.reserve(rows.size());
         std::copy(rows.begin(), rows.end(), std::back_inserter(new_rows));
         return new_rows;
#endif
      });
Q
qijun 已提交
183

184
  py::class_<Variable>(m, "Variable", R"DOC(Variable Class.
185 186 187

All parameter, weight, gradient are variables in Paddle.
)DOC")
188
      .def("is_int", [](const Variable &var) { return var.IsType<int>(); })
189
      .def("set_int",
190 191
           [](Variable &var, int val) -> void { *var.GetMutable<int>() = val; })
      .def("get_int", [](const Variable &var) -> int { return var.Get<int>(); })
192 193 194 195 196 197 198
      .def("is_float", [](const Variable &var) { return var.IsType<float>(); })
      .def("set_float",
           [](Variable &var, float val) -> void {
             *var.GetMutable<float>() = val;
           })
      .def("get_float",
           [](const Variable &var) -> float { return var.Get<float>(); })
Y
Yu Yang 已提交
199
      .def("get_tensor",
200 201
           [](Variable &self) -> LoDTensor * {
             return self.GetMutable<LoDTensor>();
D
dangqingqing 已提交
202 203
           },
           py::return_value_policy::reference)
Y
Yu Yang 已提交
204 205 206
      .def("get_lod_rank_table",
           [](Variable &self) { return self.GetMutable<LoDRankTable>(); },
           py::return_value_policy::reference)
Q
qijun 已提交
207 208 209 210 211
      .def("get_selected_rows",
           [](Variable &self) -> SelectedRows * {
             return self.GetMutable<SelectedRows>();
           },
           py::return_value_policy::reference)
Y
Yu Yang 已提交
212 213 214
      .def("get_lod_tensor_array",
           [](Variable &self) { return self.GetMutable<LoDTensorArray>(); },
           py::return_value_policy::reference)
D
Dong Zhihong 已提交
215 216 217 218 219 220 221
#ifdef PADDLE_WITH_CUDA
      .def("get_communicator",
           [](Variable &self) -> platform::Communicator * {
             return self.GetMutable<platform::Communicator>();
           },
           py::return_value_policy::reference)
#endif
Y
Yan Chunwei 已提交
222
      .def("get_net",
D
dongzhihong 已提交
223 224
           [](Variable &self) -> operators::NetOp * {
             return self.GetMutable<operators::NetOp>();
Y
Yan Chunwei 已提交
225
           },
Y
Refine  
Yu Yang 已提交
226 227 228 229 230 231
           py::return_value_policy::reference)
      .def("get_reader",
           [](Variable &self) -> framework::ReaderHolder * {
             PADDLE_ENFORCE(self.IsType<framework::ReaderHolder>());
             return self.GetMutable<framework::ReaderHolder>();
           },
Y
Yu Yang 已提交
232
           py::return_value_policy::reference);
233

Y
Refine  
Yu Yang 已提交
234 235 236 237
  py::class_<framework::ReaderHolder>(m, "Reader", "")
      .def("has_next", &framework::ReaderHolder::HasNext)
      .def("reset", &framework::ReaderHolder::ReInit);

238
  py::class_<Scope>(m, "Scope", "")
D
dongzhihong 已提交
239
      .def("var",
240
           [](Scope &self, const std::string &name) -> Variable * {
D
dongzhihong 已提交
241
             return self.Var(name);
Y
Yu Yang 已提交
242
           },
243
           py::return_value_policy::reference)
244
      .def("find_var", &Scope::FindVar, py::return_value_policy::reference)
Y
Yu Yang 已提交
245
      .def(py::init<>())
246
      .def("new_scope", [](Scope &self) -> Scope * { return &self.NewScope(); },
247
           py::return_value_policy::reference)
Y
Yu Yang 已提交
248
      .def("drop_kids", &Scope::DropKids);
249

Y
Yu Yang 已提交
250 251
  //! @note: Be careful! PyBind will return std::string as an unicode, not
  //! Python str. If you want a str object, you should cast them in Python.
Y
Yu Yang 已提交
252 253
  m.def("get_all_op_protos", []() -> std::vector<py::bytes> {
    std::vector<py::bytes> ret_values;
254 255 256 257 258 259 260 261 262 263
    for (auto &iter : OpInfoMap::Instance().map()) {
      auto &info = iter.second;
      if (info.HasOpProtoAndChecker()) {
        std::string str;
        PADDLE_ENFORCE(
            info.Proto().SerializeToString(&str),
            "Serialize OpProto Error. This could be a bug of Paddle.");
        ret_values.emplace_back(str);
      }
    }
Y
Yu Yang 已提交
264 265
    return ret_values;
  });
266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281
  m.def(
      "get_grad_op_desc", [](const OpDesc &op_desc,
                             const std::unordered_set<std::string> &no_grad_set,
                             const std::vector<BlockDesc *> &grad_sub_block) {
        std::unordered_map<std::string, std::string> grad_to_var;
        std::vector<std::unique_ptr<OpDesc>> grad_op_descs =
            framework::OpInfoMap::Instance()
                .Get(op_desc.Type())
                .GradOpMaker()(op_desc, no_grad_set, &grad_to_var,
                               grad_sub_block);
        std::vector<OpDesc *> grad_op_desc_ptrs(grad_op_descs.size());
        std::transform(grad_op_descs.begin(), grad_op_descs.end(),
                       grad_op_desc_ptrs.begin(),
                       [](std::unique_ptr<OpDesc> &p) { return p.release(); });
        return std::make_pair(grad_op_desc_ptrs, grad_to_var);
      });
Y
Yu Yang 已提交
282
  m.def("prune", [](const ProgramDesc &origin,
283
                    const std::vector<std::array<size_t, 2>> &targets) {
Y
Yu Yang 已提交
284
    ProgramDesc prog_with_targets(origin);
285
    for (const auto &t : targets) {
286
      prog_with_targets.MutableBlock(t[0])->Op(t[1])->MarkAsTarget();
287
    }
288
    proto::ProgramDesc pruned_desc;
289
    Prune(*prog_with_targets.Proto(), &pruned_desc);
Y
Yu Yang 已提交
290
    return new ProgramDesc(pruned_desc);
291
  });
Y
Yu Yang 已提交
292
  m.def("inference_optimize", [](ProgramDesc &origin) {
293
    proto::ProgramDesc pruned_desc;
294
    InferenceOptimize(*(origin.Proto()), &pruned_desc);
Y
Yu Yang 已提交
295
    return new ProgramDesc(pruned_desc);
296
  });
F
fengjiayi 已提交
297 298
  m.def("empty_var_name", []() { return framework::kEmptyVarName; });
  m.def("grad_var_suffix", []() { return framework::kGradVarSuffix; });
299 300 301
  m.def_submodule(
       "var_names",
       "The module will return special predefined variable name in Paddle")
Y
Yi Wang 已提交
302 303
      .def("empty", []() { return kEmptyVarName; })
      .def("temp", []() { return kTempVarName; });
Q
qijun 已提交
304
  // clang-format off
Y
Yu Yang 已提交
305
  py::class_<paddle::platform::DeviceContext>(m, "DeviceContext")
Q
qijun 已提交
306 307
      .def_static("create",
                  [](paddle::platform::CPUPlace& place)
Q
qijun 已提交
308
                      -> paddle::platform::DeviceContext* {
Q
qijun 已提交
309 310 311
                    return new paddle::platform::CPUDeviceContext();
                  })
      .def_static("create",
D
dzhwinter 已提交
312
                  [](paddle::platform::CUDAPlace& place)
Q
qijun 已提交
313
                      -> paddle::platform::DeviceContext* {
314
#ifndef PADDLE_WITH_CUDA
D
dzhwinter 已提交
315
                    PADDLE_THROW("CUDAPlace is not supported in CPU device.");
Q
qijun 已提交
316
#else
Q
qijun 已提交
317
                    return new paddle::platform::CUDADeviceContext(place);
Q
qijun 已提交
318
#endif
Q
qijun 已提交
319
                  });
D
Dong Zhihong 已提交
320 321 322 323
// clang-format on
#ifdef PADDLE_WITH_CUDA
  py::class_<platform::Communicator>(m, "Communicator").def(py::init<>());
#endif
D
dzhwinter 已提交
324
  py::class_<platform::CUDAPlace>(m, "CUDAPlace")
325
      .def(py::init<int>())
D
dzhwinter 已提交
326
      .def("__str__", string::to_string<const platform::CUDAPlace &>);
Q
qijun 已提交
327

328 329 330
  py::class_<paddle::platform::CPUPlace>(m, "CPUPlace")
      .def(py::init<>())
      .def("__str__", string::to_string<const platform::CPUPlace &>);
Y
Yu Yang 已提交
331

Y
Yu Yang 已提交
332 333 334 335 336 337 338
  py::class_<platform::Place>(m, "Place")
      .def(py::init<>())
      .def("set_place",
           [](platform::Place &self, const platform::CPUPlace &cpu_place) {
             self = cpu_place;
           })
      .def("set_place",
D
dzhwinter 已提交
339
           [](platform::Place &self, const platform::CUDAPlace &gpu_place) {
Y
Yu Yang 已提交
340 341 342
             self = gpu_place;
           });

Y
Yu Yang 已提交
343 344 345
  py::class_<OperatorBase>(m, "Operator")
      .def_static("create",
                  [](py::bytes protobin) {
346
                    proto::OpDesc desc;
Y
Yu Yang 已提交
347 348 349 350 351
                    PADDLE_ENFORCE(desc.ParsePartialFromString(protobin),
                                   "Cannot parse user input to OpDesc");
                    PADDLE_ENFORCE(desc.IsInitialized(),
                                   "User OpDesc is not initialized, reason %s",
                                   desc.InitializationErrorString());
352
                    return OpRegistry::CreateOp(desc);
Y
Yu Yang 已提交
353 354 355 356 357 358
                  })
      .def("backward",
           [](const OperatorBase &forwardOp,
              const std::unordered_set<std::string> &no_grad_vars) {
             return Backward(forwardOp, no_grad_vars).release();
           })
359
      .def("run",
360
           [](OperatorBase &self, const Scope &scope,
D
dzhwinter 已提交
361 362 363
              const platform::CPUPlace &place) { self.Run(scope, place); })
      .def("run",
           [](OperatorBase &self, const Scope &scope,
D
dzhwinter 已提交
364
              const platform::CUDAPlace &place) { self.Run(scope, place); })
Y
Yu Yang 已提交
365 366 367 368 369 370 371
      .def("type",
           [](const OperatorBase &op) -> std::string { return op.Type(); })
      .def("outputs",
           [](const OperatorBase &op)
               -> std::map<std::string, std::vector<std::string>> {
                 return op.Outputs();
               })
Q
qijun 已提交
372 373
      .def("output_vars",
           [](const OperatorBase &op) { return op.OutputVars(true); })
Y
Yu Yang 已提交
374
      .def("inputs", [](const OperatorBase &op) { return op.Inputs(); })
Q
qijun 已提交
375
      .def("input_vars", [](const OperatorBase &op) { return op.InputVars(); })
Y
Yu Yang 已提交
376 377 378 379
      .def("__str__", &OperatorBase::DebugString)
      .def("no_intermediate_outputs",
           [](const OperatorBase &op) { return op.OutputVars(false); })
      .def("support_gpu", &OperatorBase::SupportGPU);
Y
Yu Yang 已提交
380

Y
Yu Yang 已提交
381 382 383 384 385 386 387
  py::class_<operators::NetOp, OperatorBase>(m, "Net")
      .def_static("create",
                  []() -> operators::NetOp * {
                    auto *retv = new operators::NetOp;
                    retv->SetType("plain_net");
                    return retv;
                  })
388 389
      .def("append_op", [](operators::NetOp &self,
                           const OperatorBase &op) { self.AppendOp(op); })
D
dongzhihong 已提交
390 391 392 393
      .def("complete_add_op", &operators::NetOp::CompleteAddOp)
      .def("complete_add_op", [](std::shared_ptr<operators::NetOp> &self) {
        self->CompleteAddOp();
      });
Y
Yan Chunwei 已提交
394

Z
cond op  
zchen0211 已提交
395 396 397 398
  // cond_op
  py::class_<operators::CondOp, OperatorBase>(m, "CondOp")
      .def_static("create",
                  [](py::bytes protobin) -> operators::CondOp * {
399
                    proto::OpDesc desc;
Z
cond op  
zchen0211 已提交
400 401 402 403 404
                    PADDLE_ENFORCE(desc.ParsePartialFromString(protobin),
                                   "Cannot parse user input to OpDesc");
                    PADDLE_ENFORCE(desc.IsInitialized(),
                                   "User OpDesc is not initialized, reason %s",
                                   desc.InitializationErrorString());
405
                    auto cond_op = OpRegistry::CreateOp(desc);
Z
cond op  
zchen0211 已提交
406 407 408 409 410 411 412 413 414 415 416
                    return static_cast<operators::CondOp *>(cond_op.release());
                  })
      .def("set_truenet",
           [](operators::CondOp &self, const operators::NetOp &net) -> void {
             self.set_truenet(net.Clone());
           })
      .def("set_falsenet",
           [](operators::CondOp &self, const operators::NetOp &net) -> void {
             self.set_falsenet(net.Clone());
           });

F
fengjiayi 已提交
417
  py::class_<framework::Executor>(m, "Executor")
D
dzhwinter 已提交
418
      .def(py::init<const platform::Place &>())
419 420 421
      .def("run",
           (void (Executor::*)(const ProgramDesc &, Scope *, int, bool, bool)) &
               Executor::Run);
F
fengjiayi 已提交
422

D
dzhwinter 已提交
423
  m.def("init_gflags", framework::InitGflags);
Y
Yang Yu 已提交
424
  m.def("init_glog", framework::InitGLOG);
D
dzhwinter 已提交
425
  m.def("init_devices", &framework::InitDevices);
426

427
  m.def("is_compiled_with_cuda", IsCompiledWithCUDA);
428 429 430 431 432 433
#ifdef PADDLE_WITH_CUDA
  m.def("is_float16_supported", [](const platform::CUDAPlace &place) -> bool {
    // Only GPUs with Compute Capability >= 53 support float16
    return platform::GetCUDAComputeCapability(place.device) >= 53;
  });
#endif
434

435
  m.def("set_feed_variable", framework::SetFeedVariable);
Q
qijun 已提交
436
  m.def("get_fetch_variable", framework::GetFetchVariable);
Q
qijun 已提交
437

F
fengjiayi 已提交
438 439 440 441
  BindProgramDesc(m);
  BindBlockDesc(m);
  BindVarDsec(m);
  BindOpDesc(m);
Q
qiaolongfei 已提交
442
  BindConstValue(m);
Y
Yu Yang 已提交
443

Y
Yu Yang 已提交
444 445 446 447 448 449 450 451 452
  py::class_<framework::LoDRankTable>(m, "LodRankTable")
      .def("items", [](framework::LoDRankTable &table) {
        std::vector<std::pair<size_t, size_t>> res;
        for (auto &item : table.items()) {
          res.push_back({item.index, item.length});
        }
        return res;
      });

Y
Yu Yang 已提交
453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469
  py::class_<LoDTensorArray>(m, "LoDTensorArray")
      .def("__getitem__",
           [](LoDTensorArray &self, size_t i) { return &self.at(i); },
           py::return_value_policy::reference)
      .def("__len__", [](LoDTensorArray &self) { return self.size(); })
      .def("__setitem__",
           [](LoDTensorArray &self, size_t i, const LoDTensor &t) {
             PADDLE_ENFORCE_LT(i, self.size());
             self[i].ShareDataWith(t);
             self[i].set_lod(t.lod());
           })
      .def("append", [](LoDTensorArray &self, const LoDTensor &t) {
        self.emplace_back();
        self.back().ShareDataWith(t);
        self.back().set_lod(t.lod());
      });

Y
Yu Yang 已提交
470
  m.def("op_support_gpu", OpSupportGPU);
D
Dong Zhihong 已提交
471
#ifdef PADDLE_WITH_CUDA
D
Dong Zhihong 已提交
472
  m.def("get_cuda_device_count", platform::GetCUDADeviceCount);
D
dangqingqing 已提交
473 474 475 476

  m.def("nvprof_init", platform::CudaProfilerInit);
  m.def("nvprof_start", platform::CudaProfilerStart);
  m.def("nvprof_stop", platform::CudaProfilerStop);
D
Dong Zhihong 已提交
477
#endif
Y
Yu Yang 已提交
478

479 480 481 482
  py::enum_<platform::ProfilerState>(m, "ProfilerState", py::arithmetic())
      .value("kDisabled", platform::ProfilerState::kDisabled)
      .value("kCPU", platform::ProfilerState::kCPU)
      .value("kCUDA", platform::ProfilerState::kCUDA)
483
      .value("kAll", platform::ProfilerState::kAll)
484 485 486 487 488 489 490 491 492 493 494 495 496 497
      .export_values();

  py::enum_<platform::EventSortingKey>(m, "EventSortingKey", py::arithmetic())
      .value("kDefault", platform::EventSortingKey::kDefault)
      .value("kCalls", platform::EventSortingKey::kCalls)
      .value("kTotal", platform::EventSortingKey::kTotal)
      .value("kMin", platform::EventSortingKey::kMin)
      .value("kMax", platform::EventSortingKey::kMax)
      .value("kAve", platform::EventSortingKey::kAve)
      .export_values();

  m.def("enable_profiler", platform::EnableProfiler);
  m.def("disable_profiler", platform::DisableProfiler);
  m.def("reset_profiler", platform::ResetProfiler);
Y
Yu Yang 已提交
498 499

  BindRecordIOWriter(m);
500
  return m.ptr();
L
Luo Tao 已提交
501
}
502
}  // namespace pybind
503
}  // namespace paddle