math_function_test.cu 14.8 KB
Newer Older
1
//  Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
D
dzhwinter 已提交
2 3 4 5 6 7 8 9 10 11 12 13
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//    http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
Q
qijun 已提交
14
#include "gtest/gtest.h"
Y
Yi Wang 已提交
15
#include "paddle/fluid/operators/math/math_function.h"
Q
qijun 已提交
16

17 18
#include <iostream>

19 20 21 22 23 24 25 26
void fill_fp16_data(paddle::platform::float16* in_ptr, size_t size,
                    const std::vector<float>& data) {
  PADDLE_ENFORCE_EQ(size, data.size());
  for (size_t i = 0; i < data.size(); ++i) {
    in_ptr[i] = paddle::platform::float16(data[i]);
  }
}

27 28 29 30 31 32 33 34 35
bool is_fp16_supported(int device_id) {
  cudaDeviceProp device_prop;
  cudaDeviceProperties(&device_prop, device_id);
  PADDLE_ENFORCE_EQ(cudaGetLastError(), cudaSuccess);
  int compute_capability = device_prop.major * 10 + device_prop.minor;
  std::cout << "compute_capability is " << compute_capability << std::endl;
  return compute_capability >= 53;
}

36 37 38 39 40 41 42 43 44 45 46 47 48 49 50
TEST(math_function, notrans_mul_trans_fp32) {
  using namespace paddle::framework;
  using namespace paddle::platform;

  Tensor input1;
  Tensor input1_gpu;
  Tensor input2_gpu;
  Tensor out_gpu;
  Tensor out;

  CPUPlace cpu_place;
  CUDAPlace gpu_place(0);
  CUDADeviceContext context(gpu_place);

  float* input1_ptr = input1.mutable_data<float>({2, 3}, cpu_place);
Q
qijun 已提交
51 52 53
  float arr[6] = {0, 1, 2, 3, 4, 5};
  memcpy(input1_ptr, arr, 6 * sizeof(float));

54 55
  TensorCopy(input1, gpu_place, context, &input1_gpu);
  TensorCopy(input1, gpu_place, context, &input2_gpu);
Q
qijun 已提交
56

57
  out_gpu.mutable_data<float>({2, 2}, gpu_place);
Q
qijun 已提交
58

59
  paddle::operators::math::matmul<CUDADeviceContext, float>(
Q
qijun 已提交
60 61
      context, input1_gpu, false, input2_gpu, true, 1, &out_gpu, 0);

62
  TensorCopy(out_gpu, cpu_place, context, &out);
Q
qijun 已提交
63 64 65 66 67 68 69 70 71

  float* out_ptr = out.data<float>();
  context.Wait();
  EXPECT_EQ(out_ptr[0], 5);
  EXPECT_EQ(out_ptr[1], 14);
  EXPECT_EQ(out_ptr[2], 14);
  EXPECT_EQ(out_ptr[3], 50);
}

72 73 74 75
TEST(math_function, notrans_mul_trans_fp16) {
  using namespace paddle::framework;
  using namespace paddle::platform;

76 77 78 79
  if (!is_fp16_supported(0)) {
    return;
  }

80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124
  Tensor input1;
  Tensor input1_gpu;
  Tensor input2_gpu;
  Tensor out_gpu;
  Tensor out;

  CPUPlace cpu_place;
  CUDAPlace gpu_place(0);
  CUDADeviceContext context(gpu_place);

  float16* input1_ptr = input1.mutable_data<float16>({2, 3}, cpu_place);
  fill_fp16_data(input1_ptr, input1.numel(), {0, 1, 2, 3, 4, 5});

  TensorCopy(input1, gpu_place, context, &input1_gpu);
  TensorCopy(input1, gpu_place, context, &input2_gpu);

  out_gpu.mutable_data<float16>({2, 2}, gpu_place);

  paddle::operators::math::matmul<CUDADeviceContext, float16>(
      context, input1_gpu, false, input2_gpu, true, float16(1), &out_gpu,
      float16(0));

  TensorCopy(out_gpu, cpu_place, context, &out);

  float16* out_ptr = out.data<float16>();
  context.Wait();
  EXPECT_EQ(static_cast<float>(out_ptr[0]), 5);
  EXPECT_EQ(static_cast<float>(out_ptr[1]), 14);
  EXPECT_EQ(static_cast<float>(out_ptr[2]), 14);
  EXPECT_EQ(static_cast<float>(out_ptr[3]), 50);
}

TEST(math_function, trans_mul_notrans_fp32) {
  using namespace paddle::framework;
  using namespace paddle::platform;

  Tensor input1;
  Tensor input1_gpu;
  Tensor input2_gpu;
  Tensor out_gpu;
  Tensor out;

  CPUPlace cpu_place;
  CUDAPlace gpu_place(0);
  CUDADeviceContext context(gpu_place);
Q
qijun 已提交
125

126
  float* input1_ptr = input1.mutable_data<float>({2, 3}, cpu_place);
Q
qijun 已提交
127 128 129
  float arr[6] = {0, 1, 2, 3, 4, 5};
  memcpy(input1_ptr, arr, 6 * sizeof(float));

130 131
  TensorCopy(input1, gpu_place, context, &input1_gpu);
  TensorCopy(input1, gpu_place, context, &input2_gpu);
Q
qijun 已提交
132

133
  out_gpu.mutable_data<float>({3, 3}, gpu_place);
Q
qijun 已提交
134

Q
QI JUN 已提交
135
  paddle::operators::math::matmul<paddle::platform::CUDADeviceContext, float>(
Q
qijun 已提交
136 137
      context, input1_gpu, true, input2_gpu, false, 1, &out_gpu, 0);

138
  TensorCopy(out_gpu, cpu_place, context, &out);
Q
qijun 已提交
139 140 141 142 143 144 145 146 147 148 149 150 151 152

  float* out_ptr = out.data<float>();
  context.Wait();
  EXPECT_EQ(out_ptr[0], 9);
  EXPECT_EQ(out_ptr[1], 12);
  EXPECT_EQ(out_ptr[2], 15);
  EXPECT_EQ(out_ptr[3], 12);
  EXPECT_EQ(out_ptr[4], 17);
  EXPECT_EQ(out_ptr[5], 22);
  EXPECT_EQ(out_ptr[6], 15);
  EXPECT_EQ(out_ptr[7], 22);
  EXPECT_EQ(out_ptr[8], 29);
}

153 154 155 156
TEST(math_function, trans_mul_notrans_fp16) {
  using namespace paddle::framework;
  using namespace paddle::platform;

157 158 159 160
  if (!is_fp16_supported(0)) {
    return;
  }

161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211
  Tensor input1;
  Tensor input1_gpu;
  Tensor input2_gpu;
  Tensor out_gpu;
  Tensor out;

  CPUPlace cpu_place;
  CUDAPlace gpu_place(0);
  CUDADeviceContext context(gpu_place);

  float16* input1_ptr = input1.mutable_data<float16>({2, 3}, cpu_place);
  fill_fp16_data(input1_ptr, input1.numel(), {0, 1, 2, 3, 4, 5});

  TensorCopy(input1, gpu_place, context, &input1_gpu);
  TensorCopy(input1, gpu_place, context, &input2_gpu);

  out_gpu.mutable_data<float16>({3, 3}, gpu_place);

  paddle::operators::math::matmul<paddle::platform::CUDADeviceContext, float16>(
      context, input1_gpu, true, input2_gpu, false, float16(1), &out_gpu,
      float16(0));

  TensorCopy(out_gpu, cpu_place, context, &out);

  float16* out_ptr = out.data<float16>();
  context.Wait();
  EXPECT_EQ(static_cast<float>(out_ptr[0]), 9);
  EXPECT_EQ(static_cast<float>(out_ptr[1]), 12);
  EXPECT_EQ(static_cast<float>(out_ptr[2]), 15);
  EXPECT_EQ(static_cast<float>(out_ptr[3]), 12);
  EXPECT_EQ(static_cast<float>(out_ptr[4]), 17);
  EXPECT_EQ(static_cast<float>(out_ptr[5]), 22);
  EXPECT_EQ(static_cast<float>(out_ptr[6]), 15);
  EXPECT_EQ(static_cast<float>(out_ptr[7]), 22);
  EXPECT_EQ(static_cast<float>(out_ptr[8]), 29);
}

TEST(math_function, gemm_notrans_cublas_fp32) {
  using namespace paddle::framework;
  using namespace paddle::platform;

  Tensor input1;
  Tensor input2;
  Tensor input3;
  Tensor input1_gpu;
  Tensor input2_gpu;
  Tensor input3_gpu;

  CPUPlace cpu_place;
  CUDAPlace gpu_place(0);
  CUDADeviceContext context(gpu_place);
Q
qijun 已提交
212 213 214 215

  int m = 2;
  int n = 3;
  int k = 3;
216
  float* input1_ptr = input1.mutable_data<float>({2, 3}, cpu_place);
Q
qijun 已提交
217 218
  float arr1[6] = {0, 1, 2, 3, 4, 5};
  memcpy(input1_ptr, arr1, 6 * sizeof(float));
219
  float* input2_ptr = input2.mutable_data<float>({3, 4}, cpu_place);
Q
qijun 已提交
220 221
  float arr2[12] = {0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11};
  memcpy(input2_ptr, arr2, 12 * sizeof(float));
222
  float* input3_ptr = input3.mutable_data<float>({2, 4}, cpu_place);
Q
qijun 已提交
223 224 225
  float arr3[8] = {0, 1, 2, 3, 4, 5, 6, 7};
  memcpy(input3_ptr, arr3, 8 * sizeof(float));

226 227 228
  TensorCopy(input1, gpu_place, context, &input1_gpu);
  TensorCopy(input2, gpu_place, context, &input2_gpu);
  TensorCopy(input3, gpu_place, context, &input3_gpu);
Q
qijun 已提交
229 230
  float* a = input1_gpu.data<float>();
  float* b = input2_gpu.data<float>();
231
  float* c = input3_gpu.mutable_data<float>(gpu_place);
Q
qijun 已提交
232

Q
QI JUN 已提交
233
  paddle::operators::math::gemm<paddle::platform::CUDADeviceContext, float>(
Q
qijun 已提交
234 235
      context, false, false, m, n, k, 1, a, 3, b + 1, 4, 1, c + 1, 4);

236
  TensorCopy(input3_gpu, cpu_place, context, &input3);
Q
qijun 已提交
237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254

  // numpy code:
  // a = np.arange(6).reshape(2, 3)
  // b = np.arange(12).reshape(3, 4)[:, 1:]
  // c = np.arange(8).reshape(2, 4)[:, 1:]
  // out = np.arange(8).reshape(2, 4)
  // out[:, 1:] = np.dot(a, b) + c
  context.Wait();
  EXPECT_EQ(input3_ptr[0], 0);
  EXPECT_EQ(input3_ptr[1], 24);
  EXPECT_EQ(input3_ptr[2], 28);
  EXPECT_EQ(input3_ptr[3], 32);
  EXPECT_EQ(input3_ptr[4], 4);
  EXPECT_EQ(input3_ptr[5], 73);
  EXPECT_EQ(input3_ptr[6], 86);
  EXPECT_EQ(input3_ptr[7], 99);
}

255 256 257 258
TEST(math_function, gemm_notrans_cublas_fp16) {
  using namespace paddle::framework;
  using namespace paddle::platform;

259 260 261 262
  if (!is_fp16_supported(0)) {
    return;
  }

263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328
  Tensor input1;
  Tensor input2;
  Tensor input3;
  Tensor input1_gpu;
  Tensor input2_gpu;
  Tensor input3_gpu;

  CPUPlace cpu_place;
  CUDAPlace gpu_place(0);
  CUDADeviceContext context(gpu_place);

  int m = 2;
  int n = 3;
  int k = 3;
  float16* input1_ptr = input1.mutable_data<float16>({2, 3}, cpu_place);
  fill_fp16_data(input1_ptr, input1.numel(), {0, 1, 2, 3, 4, 5});
  float16* input2_ptr = input2.mutable_data<float16>({3, 4}, cpu_place);
  fill_fp16_data(input2_ptr, input2.numel(),
                 {0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11});
  float16* input3_ptr = input3.mutable_data<float16>({2, 4}, cpu_place);
  fill_fp16_data(input3_ptr, input3.numel(), {0, 1, 2, 3, 4, 5, 6, 7});

  TensorCopy(input1, gpu_place, context, &input1_gpu);
  TensorCopy(input2, gpu_place, context, &input2_gpu);
  TensorCopy(input3, gpu_place, context, &input3_gpu);
  float16* a = input1_gpu.data<float16>();
  float16* b = input2_gpu.data<float16>();
  float16* c = input3_gpu.mutable_data<float16>(gpu_place);

  paddle::operators::math::gemm<paddle::platform::CUDADeviceContext, float16>(
      context, false, false, m, n, k, float16(1), a, 3, b + 1, 4, float16(1),
      c + 1, 4);

  TensorCopy(input3_gpu, cpu_place, context, &input3);

  // numpy code:
  // a = np.arange(6).reshape(2, 3)
  // b = np.arange(12).reshape(3, 4)[:, 1:]
  // c = np.arange(8).reshape(2, 4)[:, 1:]
  // out = np.arange(8).reshape(2, 4)
  // out[:, 1:] = np.dot(a, b) + c
  context.Wait();
  EXPECT_EQ(static_cast<float>(input3_ptr[0]), 0);
  EXPECT_EQ(static_cast<float>(input3_ptr[1]), 24);
  EXPECT_EQ(static_cast<float>(input3_ptr[2]), 28);
  EXPECT_EQ(static_cast<float>(input3_ptr[3]), 32);
  EXPECT_EQ(static_cast<float>(input3_ptr[4]), 4);
  EXPECT_EQ(static_cast<float>(input3_ptr[5]), 73);
  EXPECT_EQ(static_cast<float>(input3_ptr[6]), 86);
  EXPECT_EQ(static_cast<float>(input3_ptr[7]), 99);
}

TEST(math_function, gemm_trans_cublas_fp32) {
  using namespace paddle::framework;
  using namespace paddle::platform;

  Tensor input1;
  Tensor input2;
  Tensor input3;
  Tensor input1_gpu;
  Tensor input2_gpu;
  Tensor input3_gpu;

  CPUPlace cpu_place;
  CUDAPlace gpu_place(0);
  CUDADeviceContext context(gpu_place);
Q
qijun 已提交
329 330 331 332

  int m = 2;
  int n = 3;
  int k = 3;
333
  float* input1_ptr = input1.mutable_data<float>({2, 3}, cpu_place);
Q
qijun 已提交
334 335
  float arr1[6] = {0, 1, 2, 3, 4, 5};
  memcpy(input1_ptr, arr1, 6 * sizeof(float));
336
  float* input2_ptr = input2.mutable_data<float>({4, 3}, cpu_place);
Q
qijun 已提交
337 338
  float arr2[12] = {0, 4, 8, 1, 5, 9, 2, 6, 10, 3, 7, 11};
  memcpy(input2_ptr, arr2, 12 * sizeof(float));
339
  float* input3_ptr = input3.mutable_data<float>({2, 4}, cpu_place);
Q
qijun 已提交
340 341 342
  float arr3[8] = {0, 1, 2, 3, 4, 5, 6, 7};
  memcpy(input3_ptr, arr3, 8 * sizeof(float));

343 344 345
  TensorCopy(input1, gpu_place, context, &input1_gpu);
  TensorCopy(input2, gpu_place, context, &input2_gpu);
  TensorCopy(input3, gpu_place, context, &input3_gpu);
Q
qijun 已提交
346 347
  float* a = input1_gpu.data<float>();
  float* b = input2_gpu.data<float>();
348
  float* c = input3_gpu.mutable_data<float>(gpu_place);
Q
qijun 已提交
349

Q
QI JUN 已提交
350
  paddle::operators::math::gemm<paddle::platform::CUDADeviceContext, float>(
Q
qijun 已提交
351 352
      context, false, true, m, n, k, 1, a, 3, b + 3, 3, 1, c + 1, 4);

353
  TensorCopy(input3_gpu, cpu_place, context, &input3);
Q
qijun 已提交
354

355
  context.Wait();
Q
qijun 已提交
356 357 358 359 360 361 362 363
  EXPECT_EQ(input3_ptr[0], 0);
  EXPECT_EQ(input3_ptr[1], 24);
  EXPECT_EQ(input3_ptr[2], 28);
  EXPECT_EQ(input3_ptr[3], 32);
  EXPECT_EQ(input3_ptr[4], 4);
  EXPECT_EQ(input3_ptr[5], 73);
  EXPECT_EQ(input3_ptr[6], 86);
  EXPECT_EQ(input3_ptr[7], 99);
364 365 366 367 368 369
}

TEST(math_function, gemm_trans_cublas_fp16) {
  using namespace paddle::framework;
  using namespace paddle::platform;

370 371 372 373
  if (!is_fp16_supported(0)) {
    return;
  }

374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417
  Tensor input1;
  Tensor input2;
  Tensor input3;
  Tensor input1_gpu;
  Tensor input2_gpu;
  Tensor input3_gpu;

  CPUPlace cpu_place;
  CUDAPlace gpu_place(0);
  CUDADeviceContext context(gpu_place);

  int m = 2;
  int n = 3;
  int k = 3;
  float16* input1_ptr = input1.mutable_data<float16>({2, 3}, cpu_place);
  fill_fp16_data(input1_ptr, input1.numel(), {0, 1, 2, 3, 4, 5});
  float16* input2_ptr = input2.mutable_data<float16>({4, 3}, cpu_place);
  fill_fp16_data(input2_ptr, input2.numel(),
                 {0, 4, 8, 1, 5, 9, 2, 6, 10, 3, 7, 11});
  float16* input3_ptr = input3.mutable_data<float16>({2, 4}, cpu_place);
  fill_fp16_data(input3_ptr, input3.numel(), {0, 1, 2, 3, 4, 5, 6, 7});

  TensorCopy(input1, gpu_place, context, &input1_gpu);
  TensorCopy(input2, gpu_place, context, &input2_gpu);
  TensorCopy(input3, gpu_place, context, &input3_gpu);
  float16* a = input1_gpu.data<float16>();
  float16* b = input2_gpu.data<float16>();
  float16* c = input3_gpu.mutable_data<float16>(gpu_place);

  paddle::operators::math::gemm<paddle::platform::CUDADeviceContext, float16>(
      context, false, true, m, n, k, float16(1), a, 3, b + 3, 3, float16(1),
      c + 1, 4);

  TensorCopy(input3_gpu, cpu_place, context, &input3);

  context.Wait();
  EXPECT_EQ(static_cast<float>(input3_ptr[0]), 0);
  EXPECT_EQ(static_cast<float>(input3_ptr[1]), 24);
  EXPECT_EQ(static_cast<float>(input3_ptr[2]), 28);
  EXPECT_EQ(static_cast<float>(input3_ptr[3]), 32);
  EXPECT_EQ(static_cast<float>(input3_ptr[4]), 4);
  EXPECT_EQ(static_cast<float>(input3_ptr[5]), 73);
  EXPECT_EQ(static_cast<float>(input3_ptr[6]), 86);
  EXPECT_EQ(static_cast<float>(input3_ptr[7]), 99);
Q
qijun 已提交
418
}
419 420 421

template <typename T>
void GemvTest(int m, int n, bool trans) {
422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442
  using namespace paddle::framework;
  using namespace paddle::platform;

  Tensor mat_a;
  Tensor vec_b;
  Tensor vec_c;

  CPUPlace cpu_place;
  CUDAPlace gpu_place(0);
  CUDADeviceContext context(gpu_place);

  T* data_a = mat_a.mutable_data<T>({m, n}, cpu_place);
  T* data_b = vec_b.mutable_data<T>({trans ? m : n}, cpu_place);
  T* data_c = vec_c.mutable_data<T>({trans ? n : m}, cpu_place);

  Tensor g_mat_a;
  Tensor g_vec_b;
  Tensor g_vec_c;
  T* g_data_a = g_mat_a.mutable_data<T>(mat_a.dims(), gpu_place);
  T* g_data_b = g_vec_b.mutable_data<T>(vec_b.dims(), gpu_place);
  T* g_data_c = g_vec_c.mutable_data<T>(vec_c.dims(), gpu_place);
443 444 445 446 447 448 449 450

  for (int i = 0; i < mat_a.numel(); ++i) {
    data_a[i] = static_cast<T>(i);
  }
  for (int i = 0; i < vec_b.numel(); ++i) {
    data_b[i] = static_cast<T>(i);
  }

451 452
  TensorCopy(mat_a, gpu_place, context, &g_mat_a);
  TensorCopy(vec_b, gpu_place, context, &g_vec_b);
453

454
  paddle::operators::math::gemv<CUDADeviceContext, T>(
455 456 457
      context, trans, static_cast<int>(m), static_cast<int>(n), 1., g_data_a,
      g_data_b, 0., g_data_c);

458
  TensorCopy(g_vec_c, cpu_place, context, &vec_c);
459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484

  if (!trans) {
    for (int i = 0; i < m; ++i) {
      T sum = 0.0;
      for (int j = 0; j < n; ++j) {
        sum += data_a[i * n + j] * data_b[j];
      }
      ASSERT_FLOAT_EQ(data_c[i], sum);
    }
  } else {
    for (int i = 0; i < n; ++i) {
      T sum = 0.0;
      for (int j = 0; j < m; ++j) {
        sum += data_a[j * n + i] * data_b[j];
      }
      ASSERT_FLOAT_EQ(data_c[i], sum);
    }
  }
}

TEST(math_function, gemv) {
  GemvTest<float>(3, 13, false);
  GemvTest<double>(3, 13, false);
  GemvTest<float>(3, 13, true);
  GemvTest<double>(3, 13, true);
}