recurrent_op.cc 24.5 KB
Newer Older
Y
Yan Chunwei 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.

   Licensed under the Apache License, Version 2.0 (the "License");
   you may not use this file except in compliance with the License.
   You may obtain a copy of the License at

   http://www.apache.org/licenses/LICENSE-2.0

   Unless required by applicable law or agreed to in writing, software
   distributed under the License is distributed on an "AS IS" BASIS,
   WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
   See the License for the specific language governing permissions and
   limitations under the License. */

Y
Yu Yang 已提交
15 16
#include <vector>
#include "paddle/framework/executor.h"
Y
Yan Chunwei 已提交
17 18 19 20
#include "paddle/framework/op_registry.h"

namespace paddle {
namespace operators {
Y
Yu Yang 已提交
21 22 23 24
constexpr char kInputs[] = "inputs";
constexpr char kInitialStates[] = "initial_states";
constexpr char kParameters[] = "parameters";
constexpr char kOutputs[] = "outputs";
Y
Yang Yang 已提交
25
constexpr char kParallelScopes[] = "step_scopes";
Y
Yu Yang 已提交
26 27
constexpr char kExStates[] = "ex_states";
constexpr char kStates[] = "states";
28
constexpr char kStepBlock[] = "sub_block";
Y
Yu Yang 已提交
29 30 31 32 33 34 35
constexpr char kReverse[] = "reverse";
constexpr char kIsTrain[] = "is_train";
#define GRAD_SUFFIX "@GRAD"
constexpr char kInputGrads[] = "inputs" GRAD_SUFFIX;
constexpr char kOutputGrads[] = "outputs" GRAD_SUFFIX;
constexpr char kParamGrads[] = "parameters" GRAD_SUFFIX;
constexpr char kInitStateGrads[] = "initial_states" GRAD_SUFFIX;
Y
Yan Chunwei 已提交
36

Y
Yu Yang 已提交
37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69
using StepScopeVar = std::vector<framework::Scope *>;

// StepScopes manages scopes inside RNN.
//    StepScopes::CurScope() get the current scope
//    StepScopes::ExScope() get the ex-scope, or scope in previous time step.
//    StepScopes::Next() move to next time step.
//
// if is_train = False, then
//   there are two scopes for the RNN and just support forward.
// else
//   the len(scopes) == seq_len
//
// if is_backward = True, then
//   reversely access scopes
// else
//   access scopes from begin to end.
class StepScopes {
 public:
  StepScopes(const framework::Scope &parent, StepScopeVar *scopes,
             bool is_train, size_t seq_len, bool is_backward = false)
      : counter_(is_backward ? seq_len - 1 : 0UL),
        scopes_(scopes),
        is_train_(is_train),
        is_backward_(is_backward) {
    size_t num_step_scopes = is_train ? seq_len : 2;
    PADDLE_ENFORCE(is_train || !is_backward,
                   "Cannot backward when is not training");
    if (!is_backward_) {
      PADDLE_ENFORCE(scopes->empty());
      scopes->reserve(static_cast<size_t>(num_step_scopes));
      for (size_t i = 0; i < num_step_scopes; ++i) {
        scopes->emplace_back(&parent.NewScope());
      }
Y
Yan Chunwei 已提交
70
    }
Y
Yu Yang 已提交
71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236
  }

  framework::Scope &CurScope() { return GetScope(counter_); }

  framework::Scope &ExScope() {
    auto &scope = GetScope(is_backward_ ? counter_ + 1 : counter_ - 1);
    return scope;
  }

  void Next() {
    if (is_backward_) {
      --counter_;
    } else {
      ++counter_;
    }
  }

 private:
  framework::Scope &GetScope(size_t scope_id) const {
    if (!is_train_) {
      scope_id %= 2;
    }
    PADDLE_ENFORCE_LT(scope_id, scopes_->size());
    return *(*scopes_)[scope_id];
  }

  size_t counter_;
  StepScopeVar *scopes_;
  bool is_train_;
  bool is_backward_;
};

// Base class for RecurrentOp/RecurrentGradOp
//    Some common protected functions for RecurrentOp/RecurrentGradOp
class RecurrentBase : public framework::OperatorBase {
 public:
  RecurrentBase(const std::string &type,
                const framework::VariableNameMap &inputs,
                const framework::VariableNameMap &outputs,
                const framework::AttributeMap &attrs)
      : OperatorBase(type, inputs, outputs, attrs) {}

 protected:
  // Get SequenceLength from Scope
  //   The sequence length is got from input tensor. The input tensor's
  //   dimension should be [SEQ_LEN, ..., ...]. The first of the tensor's shape
  //   is SEQ_LEN. The second of the tensor's shape could be the batch size or
  //   nested sequence length.
  int64_t GetSequenceLength(const framework::Scope &scope) const {
    // Dim format SEQ_LEN, BATCH_SIZE, ...
    int64_t seq_len = -1;
    auto &all_inputs = Inputs(kInputs);
    PADDLE_ENFORCE(!all_inputs.empty());
    for (auto &iname : all_inputs) {
      auto *var = scope.FindVar(iname);
      PADDLE_ENFORCE(var != nullptr);
      PADDLE_ENFORCE(var->IsType<framework::LoDTensor>());
      auto &dim = var->Get<framework::LoDTensor>().dims();
      if (seq_len == -1) {
        seq_len = dim[0];
      } else {
        PADDLE_ENFORCE_EQ(seq_len, dim[0]);
      }
    }
    return seq_len;
  }

  // for src_tensor, dst_tensor in zip(map(src_scope.FindVar, src_vars),
  //                                   map(dst_scope.Var, dst_vars)):
  //   dst_tensor.ShareDataWith(src_tensor)
  static void LinkTensor(const framework::Scope &src_scope,
                         const std::vector<std::string> &src_vars,
                         framework::Scope *dst_scope,
                         const std::vector<std::string> &dst_vars) {
    LinkTensorWithCallback(
        src_scope, src_vars, dst_scope, dst_vars,
        [&](const framework::Tensor &src, framework::Tensor *dst) {
          dst->ShareDataWith(src);
        });
  }

  // for src_tensor, dst_tensor in zip(map(src_scope.FindVar, src_vars),
  //                                   map(dst_scope.Var, dst_vars)):
  //   callback(src_tensor, &dst_tensor)
  template <typename Callback>
  static void LinkTensorWithCallback(const framework::Scope &src_scope,
                                     const std::vector<std::string> &src_vars,
                                     framework::Scope *dst_scope,
                                     const std::vector<std::string> &dst_vars,
                                     Callback callback) {
    PADDLE_ENFORCE_EQ(src_vars.size(), dst_vars.size());
    for (size_t i = 0; i < dst_vars.size(); ++i) {
      VLOG(10) << "Link " << src_vars[i] << " to " << dst_vars[i];
      AccessTensor(src_scope, src_vars[i], dst_scope, dst_vars[i], callback);
    }
  }

  // for src_tensor, dst_tensor in zip(map(src_scope.FindVar, src_vars),
  //                                   map(dst_scope.FindVar, dst_vars)):
  //   callback(src_tensor, &dst_tensor)
  template <typename Callback>
  static void LinkTensorWithCallback(const framework::Scope &src_scope,
                                     const std::vector<std::string> &src_vars,
                                     const framework::Scope &dst_scope,
                                     const std::vector<std::string> &dst_vars,
                                     Callback callback) {
    PADDLE_ENFORCE_EQ(src_vars.size(), dst_vars.size());
    for (size_t i = 0; i < dst_vars.size(); ++i) {
      VLOG(10) << "Link " << src_vars[i] << " to " << dst_vars[i];
      AccessTensor(src_scope, src_vars[i], dst_scope, dst_vars[i], callback);
    }
  }

  // (seq_len, shape) -> return [seq_len] + list(shape)
  static framework::DDim PrependDims(size_t seq_len,
                                     const framework::DDim &src) {
    auto dims = framework::vectorize(src);
    dims.insert(dims.begin(), static_cast<int64_t>(seq_len));
    return framework::make_ddim(dims);
  }

 private:
  template <typename Callback>
  static void AccessTensor(const framework::Scope &src_scope,
                           const std::string &src_var_name,
                           framework::Scope *dst_scope,
                           const std::string &dst_var_name, Callback callback) {
    auto *src_var = src_scope.FindVar(src_var_name);
    PADDLE_ENFORCE(src_var != nullptr);
    auto &src_tensor = src_var->Get<framework::LoDTensor>();

    auto *dst_var = dst_scope->Var(dst_var_name);
    auto *dst_tensor = dst_var->GetMutable<framework::LoDTensor>();
    callback(src_tensor, dst_tensor);
  }

  template <typename Callback>
  static void AccessTensor(const framework::Scope &src_scope,
                           const std::string &src_var_name,
                           const framework::Scope &dst_scope,
                           const std::string &dst_var_name, Callback callback) {
    auto *src_var = src_scope.FindVar(src_var_name);
    PADDLE_ENFORCE(src_var != nullptr);
    auto &src_tensor = src_var->Get<framework::LoDTensor>();
    auto *dst_var = dst_scope.FindVar(dst_var_name);
    PADDLE_ENFORCE(dst_var != nullptr);
    auto *dst_tensor = dst_var->GetMutable<framework::LoDTensor>();
    callback(src_tensor, dst_tensor);
  }
};

class RecurrentOp : public RecurrentBase {
 public:
  RecurrentOp(const std::string &type, const framework::VariableNameMap &inputs,
              const framework::VariableNameMap &outputs,
              const framework::AttributeMap &attrs)
      : RecurrentBase(type, inputs, outputs, attrs) {}

  void Run(const framework::Scope &scope,
           const platform::DeviceContext &dev_ctx) const override {
    auto seq_len = static_cast<size_t>(this->GetSequenceLength(scope));
    VLOG(3) << "Static RNN input sequence length = " << seq_len;
    StepScopes scopes = CreateStepScopes(scope, seq_len);
    auto reverse = Attr<bool>(kReverse);

    framework::Executor executor(dev_ctx);
Y
Yang Yang 已提交
237
    auto *block = Attr<framework::BlockDescBind *>(kParallelBlock);
Y
Yu Yang 已提交
238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286
    auto *program = block->Program();

    for (size_t i = 0; i < seq_len; ++i) {
      size_t seq_offset = reverse ? seq_len - i - 1 : i;
      VLOG(3) << "Recurrent operate at the time step " << seq_offset;

      auto &cur_scope = scopes.CurScope();

      // Link outside::input --> inside::input
      //   inside::input = outside::input[seq_offset: seq_offset+1]
      LinkTensorWithCallback(
          scope, Inputs(kInputs), &cur_scope, Inputs(kInputs),
          [&seq_offset](const framework::Tensor &outside,
                        framework::Tensor *inside) {
            inside->ShareDataWith(outside.Slice(seq_offset, seq_offset + 1));
            auto dims = framework::vectorize(inside->dims());
            dims.erase(dims.begin());
            inside->Resize(framework::make_ddim(dims));
          });

      if (i == 0) {
        // Link initial states  --> ex_states
        LinkTensor(scope, Inputs(kInitialStates), &cur_scope,
                   Attr<std::vector<std::string>>(kExStates));
      } else {
        auto &ex_scope = scopes.ExScope();
        // Link ex_scope::state --> cur_scope::ex_state
        LinkTensor(ex_scope, Attr<std::vector<std::string>>(kStates),
                   &cur_scope, Attr<std::vector<std::string>>(kExStates));
      }

      // Every inputs are linked now, execute!
      executor.Run(*program, &cur_scope, block->ID(),
                   false /*create_local_scope*/);

      // Copy inside::output -> outside::output
      //    outside::output[seq_offset: seq_offset + 1] = inside::output
      this->LinkTensorWithCallback(
          cur_scope, Outputs(kOutputs), scope, Outputs(kOutputs),
          [&](const framework::LoDTensor &src_tensor,
              framework::LoDTensor *dst_tensor) {
            if (i == 0) {  // create output tensor at begin
              dst_tensor->Resize(PrependDims(seq_len, src_tensor.dims()));
              dst_tensor->mutable_data(dev_ctx.GetPlace(), src_tensor.type());
            }

            auto dst_out = dst_tensor->Slice(seq_offset, seq_offset + 1);
            // Explicit copy output since the local RNN scope can be destroyed
            // early.
D
dzhwinter 已提交
287 288
            framework::CopyFrom(src_tensor, dev_ctx.GetPlace(), dev_ctx,
                                &dst_out);
Y
Yu Yang 已提交
289 290 291 292 293 294 295 296 297
          });

      scopes.Next();
    }
  }

 private:
  StepScopes CreateStepScopes(const framework::Scope &scope,
                              size_t seq_len) const {
Y
Yang Yang 已提交
298
    auto *var = scope.FindVar(Output(kParallelScopes));
Y
Yu Yang 已提交
299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319
    PADDLE_ENFORCE(var != nullptr);
    return StepScopes(scope, var->GetMutable<StepScopeVar>(),
                      Attr<bool>(kIsTrain), seq_len);
  }
};

class RecurrentGradOp : public RecurrentBase {
 public:
  RecurrentGradOp(const std::string &type,
                  const framework::VariableNameMap &inputs,
                  const framework::VariableNameMap &outputs,
                  const framework::AttributeMap &attrs)
      : RecurrentBase(type, inputs, outputs, attrs) {}

  void Run(const framework::Scope &scope,
           const platform::DeviceContext &dev_ctx) const override {
    auto seq_len = static_cast<size_t>(GetSequenceLength(scope));
    StepScopes scopes = CreateStepScopes(scope, seq_len);
    auto reverse = Attr<bool>(kReverse);

    framework::Executor executor(dev_ctx);
Y
Yang Yang 已提交
320
    auto *block = Attr<framework::BlockDescBind *>(kParallelBlock);
Y
Yu Yang 已提交
321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368
    auto *program = block->Program();

    for (size_t step_id = 0; step_id < seq_len; ++step_id) {
      size_t seq_offset = reverse ? step_id : seq_len - step_id - 1;
      VLOG(3) << "Recurrent backward operate at the time step " << seq_offset;
      auto &cur_scope = scopes.CurScope();
      // Link outside::output_grads --> inside::output_grads
      //   inside::output_grad = outside::output_grad[seq_offset:seq_offset+1]
      LinkTensorWithCallback(
          scope, Inputs(kOutputGrads), &cur_scope, Inputs(kOutputGrads),
          [&](const framework::Tensor &outside, framework::Tensor *inside) {
            inside->ShareDataWith(outside.Slice(seq_offset, seq_offset + 1));
            auto dims = framework::vectorize(inside->dims());
            dims.erase(dims.begin());
            inside->Resize(framework::make_ddim(dims));
          });
      auto og_set = List2Set(Inputs(kOutputGrads));

      if (VLOG_IS_ON(10)) {
        std::ostringstream sout;
        std::copy(og_set.begin(), og_set.end(),
                  std::ostream_iterator<std::string>(sout, ","));
        VLOG(10) << " RNN output gradients = [" << sout.str() << "]";
      }

      // Link states
      //   if cur_scope::cur_state_grad in out_grads:
      //     cur_scope::cur_state_grad += ex_scope::ex_state_grad
      //   else:
      //     ex_scope::ex_state_grad --> cur_scope::cur_state_grad
      if (step_id != 0) {  // not at beginning
        auto &ex_scope = scopes.ExScope();
        auto ex_state_grads =
            GradVarLists(Attr<std::vector<std::string>>(kExStates));
        auto cur_state_grads =
            GradVarLists(Attr<std::vector<std::string>>(kStates));

        PADDLE_ENFORCE_EQ(ex_state_grads.size(), cur_state_grads.size());
        for (size_t i = 0; i < ex_state_grads.size(); ++i) {
          auto &cur_grad = cur_state_grads[i];
          auto &ex_grad = ex_state_grads[i];
          auto &ex_tensor =
              ex_scope.FindVar(ex_grad)->Get<framework::LoDTensor>();

          VLOG(10) << " RNN link " << cur_grad << " from " << ex_grad;
          auto *cur_grad_var = cur_scope.Var(cur_grad);
          auto cur_grad_tensor =
              cur_grad_var->GetMutable<framework::LoDTensor>();
D
dzhwinter 已提交
369 370
          framework::CopyFrom(ex_tensor, dev_ctx.GetPlace(), dev_ctx,
                              cur_grad_tensor);
Y
Yu Yang 已提交
371
        }
Y
Yan Chunwei 已提交
372
      }
Y
Yu Yang 已提交
373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391

      VLOG(5) << "Recurrent memory linking finished ";
      // Run step block with cur_scope
      executor.Run(*program, &cur_scope, block->ID(),
                   false /*create_local_scope*/);

      VLOG(5) << "executor.Run finished ";

      auto local_var_names = LocalVarNames(cur_scope);

      // Accumulate params
      //   if (step == 0):
      //      outside::param_grad = 0.0
      //   outside::param_grad += inside::param_grad
      {
        auto &pg_names = Outputs(kParamGrads);
        auto &p_names = Inputs(kParameters);
        PADDLE_ENFORCE_EQ(pg_names.size(), p_names.size());

Y
Yu Yang 已提交
392 393
        for (size_t param_id = 0; param_id < pg_names.size(); ++param_id) {
          auto inside_grad_name = framework::GradVarName(p_names[param_id]);
Y
Yu Yang 已提交
394 395 396 397 398 399 400 401 402 403 404 405

          // If does not compute gradient of that variable inside rnn, just
          // continue
          if (local_var_names.find(inside_grad_name) == local_var_names.end()) {
            continue;
          }

          // zero gradient variable in step 0
          if (step_id == 0) {
            auto &inside_tensor = cur_scope.FindVar(inside_grad_name)
                                      ->Get<framework::LoDTensor>();
            framework::AttributeMap attrs;
F
fengjiayi 已提交
406
            attrs["dtype"] = framework::ToDataType(inside_tensor.type());
Y
Yu Yang 已提交
407 408 409 410
            attrs["shape"] = framework::vectorize2int(inside_tensor.dims());
            attrs["value"] = 0.0f;

            auto zero_op = framework::OpRegistry::CreateOp(
Y
Yiqun Liu 已提交
411 412
                "fill_constant", framework::VariableNameMap{},
                {{"Out", {pg_names[param_id]}}}, attrs);
Y
Yu Yang 已提交
413 414 415
            zero_op->Run(scope, dev_ctx);
          }

Y
Yu Yang 已提交
416
          auto new_inside_name = cur_scope.Rename(inside_grad_name);
Y
Yu Yang 已提交
417 418 419
          // sum gradient

          auto sum_op = framework::OpRegistry::CreateOp(
Y
Yu Yang 已提交
420
              "sum", {{"X", {pg_names[param_id], new_inside_name}}},
Y
Yiqun Liu 已提交
421
              {{"Out", {pg_names[param_id]}}}, framework::AttributeMap{});
Y
Yu Yang 已提交
422
          sum_op->Run(cur_scope, dev_ctx);
Y
Yu Yang 已提交
423 424

          cur_scope.Rename(new_inside_name, inside_grad_name);
Y
Yu Yang 已提交
425
        }
Y
Yan Chunwei 已提交
426
      }
Y
Yu Yang 已提交
427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443
      VLOG(5) << "Accumulate Parameter finished ";

      // Copy input gradient from inside to outside
      //   outside::input_grad[seq_offset: seq_offset + 1] = inside::input_grad
      LinkTensorWithCallback(
          cur_scope, GradVarLists(Inputs(kInputs)), scope, Outputs(kInputGrads),
          [&](const framework::LoDTensor &inside,
              framework::LoDTensor *outside) {
            if (inside.memory_size() == 0) {  // IG is not created.
              return;
            }
            if (step_id == 0) {  // alloc memory
              outside->Resize(PrependDims(seq_len, inside.dims()));
              outside->mutable_data(dev_ctx.GetPlace(), inside.type());
            }

            auto dst = outside->Slice(seq_offset, seq_offset + 1);
D
dzhwinter 已提交
444
            framework::CopyFrom(inside, dev_ctx.GetPlace(), dev_ctx, &dst);
Y
Yu Yang 已提交
445 446 447 448 449 450 451 452 453 454 455 456
          });
      VLOG(5) << "Link outside gradient finished ";

      if (step_id + 1 == seq_len) {  // at_end
        // copy initialize states gradient from inside to outside
        LinkTensorWithCallback(
            cur_scope, GradVarLists(Attr<std::vector<std::string>>(kExStates)),
            scope, Outputs(kInitStateGrads),
            [&](const framework::LoDTensor &inside,
                framework::LoDTensor *outside) {
              outside->Resize(inside.dims());
              outside->mutable_data(dev_ctx.GetPlace(), inside.type());
D
dzhwinter 已提交
457
              framework::CopyFrom(inside, dev_ctx.GetPlace(), dev_ctx, outside);
Y
Yu Yang 已提交
458 459 460 461
            });
        VLOG(5) << "Link initialize state gradient finished ";
      }
      scopes.Next();
Y
Yan Chunwei 已提交
462 463
    }
  }
Y
Yu Yang 已提交
464 465 466 467

 private:
  StepScopes CreateStepScopes(const framework::Scope &scope,
                              size_t seq_len) const {
Y
Yang Yang 已提交
468
    auto *var = scope.FindVar(Input(kParallelScopes));
Y
Yu Yang 已提交
469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498
    PADDLE_ENFORCE(var != nullptr);
    return StepScopes(scope, var->GetMutable<StepScopeVar>(),
                      Attr<bool>(kIsTrain), seq_len, true /*is_backward*/);
  }

  std::unordered_set<std::string> List2Set(
      const std::vector<std::string> &list) const {
    std::unordered_set<std::string> local_var_name_set;
    local_var_name_set.reserve(list.size());
    for (auto &each : list) {
      local_var_name_set.insert(each);
    }
    return local_var_name_set;
  }

  std::unordered_set<std::string> LocalVarNames(
      const framework::Scope &scope) const {
    return this->List2Set(scope.GetAllNames(false));
  }
  static std::vector<std::string> GradVarLists(
      const std::vector<std::string> &var_names) {
    std::vector<std::string> retv;
    retv.reserve(var_names.size());
    std::transform(var_names.begin(), var_names.end(), std::back_inserter(retv),
                   framework::GradVarName);
    return retv;
  }
};

class RecurrentOpProtoMaker : public framework::OpProtoAndCheckerMaker {
499
 public:
Y
Yu Yang 已提交
500 501
  RecurrentOpProtoMaker(framework::OpProto *proto,
                        framework::OpAttrChecker *op_checker)
Y
Yan Chunwei 已提交
502
      : OpProtoAndCheckerMaker(proto, op_checker) {
Y
Yu Yang 已提交
503 504 505 506
    AddInput(kInputs, "rnn inputs").AsDuplicable();
    AddInput(kInitialStates, "rnn initial states").AsDuplicable();
    AddInput(kParameters,
             "Parameters are used by step block as its input. However, the "
K
kexinzhao 已提交
507 508
             "input is not a sequence tensor. Every time step, each operator "
             "in step block just use the parameter directly.")
Y
Yu Yang 已提交
509
        .AsDuplicable();
Y
Yu Yang 已提交
510
    AddOutput(kOutputs,
K
kexinzhao 已提交
511
              "The output sequence of RNN. The sequence length must be same.")
Y
Yu Yang 已提交
512
        .AsDuplicable();
Y
Yang Yang 已提交
513
    AddOutput(kParallelScopes,
K
kexinzhao 已提交
514
              "StepScopes contain all local variables in each time step.");
Y
Yu Yang 已提交
515 516 517 518 519 520 521 522 523 524 525
    AddAttr<std::vector<std::string>>(kExStates,
                                      string::Sprintf(
                                          R"DOC(The ex-state variable names.
The ex-state means the state value in the ex-timestep or the previous time step
[%s, %s, %s] must be the same order)DOC",
                                          kExStates, kStates, kInitStateGrads));
    AddAttr<std::vector<std::string>>(
        kStates,
        string::Sprintf(
            "The state variable names. [%s, %s, %s] must be the same order",
            kExStates, kStates, kInitStateGrads));
Y
Yang Yang 已提交
526
    AddAttr<framework::BlockDescBind *>(kParallelBlock,
Y
Yu Yang 已提交
527 528 529
                                        "The step block inside RNN");
    AddAttr<bool>(kReverse, R"DOC(Calculate RNN reversely or not.
By default reverse=False
Y
Yan Chunwei 已提交
530

Y
Yu Yang 已提交
531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553
Assume the input data is [A, B, C, D]

if reverse is False:
  the computation of RNN is like
      A          B          C         D
      |          |          |         |
      v          v          v         v
     rnn -----> rnn -----> rnn ----> rnn
      |          |          |         |
      v          v          v         v
      o          o          o         o

if reverse is True
  the computation of RNN is like
      A          B          C         D
      |          |          |         |
      v          v          v         v
     rnn <----- rnn <----- rnn <---- rnn
      |          |          |         |
      v          v          v         v
      o          o          o         o
)DOC").SetDefault(false);
    AddAttr<bool>(kIsTrain, "").SetDefault(true);
K
kexinzhao 已提交
554 555 556 557 558
    AddComment(R"DOC(
Static Length Recurrent Operator.

The static length recurrent operator can only operate on fixed size sequence
data, i.e. in each mini-batch, the sequence length of all inputs are the same.
Y
Yu Yang 已提交
559 560 561 562 563 564 565 566

)DOC");
  }
};

class RecurrentGradOpDescMaker : public framework::SingleGradOpDescMaker {
 public:
  using framework::SingleGradOpDescMaker::SingleGradOpDescMaker;
Y
Yan Chunwei 已提交
567

Y
Yu Yang 已提交
568 569 570 571 572 573 574 575 576 577 578
 protected:
  virtual std::unique_ptr<framework::OpDescBind> Apply() const {
    auto *grad = new framework::OpDescBind();
    grad->SetType("recurrent_grad");
    for (auto &input_param : this->InputNames()) {
      grad->SetInput(input_param, this->Input(input_param));
      grad->SetOutput(framework::GradVarName(input_param),
                      this->InputGrad(input_param));
    }

    for (auto &output_param : this->OutputNames()) {
Y
Yang Yang 已提交
579
      if (output_param == kParallelScopes) {
Y
Yu Yang 已提交
580 581 582 583 584 585 586 587 588 589
        grad->SetInput(output_param, this->Output(output_param));
        grad->SetInput(framework::GradVarName(output_param),
                       this->Output(output_param));
      } else {
        grad->SetInput(output_param, this->Output(output_param));
        grad->SetInput(framework::GradVarName(output_param),
                       this->OutputGrad(output_param));
      }
    }
    grad->SetAttrMap(this->Attrs());
Y
Yang Yang 已提交
590
    grad->SetBlockAttr(kParallelBlock, *grad_block_[0]);
Y
Yan Chunwei 已提交
591

Y
Yu Yang 已提交
592
    return std::unique_ptr<framework::OpDescBind>(grad);
Y
Yan Chunwei 已提交
593 594 595
  }
};

Y
Yu Yang 已提交
596 597 598 599 600 601 602
class RecurrentGradOpShapeInference : public framework::InferShapeBase {
 public:
  void operator()(framework::InferShapeContext *ctx) const override {
    std::vector<std::string> input{kInputs, kInitialStates};
    std::vector<std::string> output{kOutputs};
    for (auto &s : input) {
      PADDLE_ENFORCE(ctx->HasInputs(s));
603 604 605
      PADDLE_ENFORCE(ctx->HasOutputs(framework::GradVarName(s)),
                     "Cannot find the gradient variable %s",
                     framework::GradVarName(s));
Y
Yu Yang 已提交
606 607 608 609 610 611
    }
    for (auto &s : output) {
      PADDLE_ENFORCE(ctx->HasInputs(s));
    }
    for (auto &s : input) {
      ctx->SetOutputsDim(framework::GradVarName(s), ctx->GetInputsDim(s));
Y
Yan Chunwei 已提交
612
    }
Y
Yu Yang 已提交
613 614 615 616 617 618 619
    if (ctx->HasInputs(kParameters)) {
      PADDLE_ENFORCE(ctx->HasOutputs(framework::GradVarName(kParameters)));
      ctx->SetOutputsDim(framework::GradVarName(kParameters),
                         ctx->GetInputsDim(kParameters));
    }
  }
};
Y
Yan Chunwei 已提交
620 621 622 623

}  // namespace operators
}  // namespace paddle

Y
Yu Yang 已提交
624 625 626 627 628
REGISTER_OPERATOR(recurrent, paddle::operators::RecurrentOp,
                  paddle::operators::RecurrentOpProtoMaker,
                  paddle::operators::RecurrentGradOpDescMaker);
REGISTER_OPERATOR(recurrent_grad, paddle::operators::RecurrentGradOp,
                  paddle::operators::RecurrentGradOpShapeInference);