preprocess_op.cc 9.0 KB
Newer Older
Q
qingqing01 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
//   Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#include <string>
16
#include <thread>
17
#include <vector>
Q
qingqing01 已提交
18 19 20 21 22 23

#include "include/preprocess_op.h"

namespace PaddleDetection {

void InitInfo::Run(cv::Mat* im, ImageBlob* data) {
24 25
  data->im_shape_ = {static_cast<float>(im->rows),
                     static_cast<float>(im->cols)};
Q
qingqing01 已提交
26
  data->scale_factor_ = {1., 1.};
27 28
  data->in_net_shape_ = {static_cast<float>(im->rows),
                         static_cast<float>(im->cols)};
Q
qingqing01 已提交
29 30
}

31
void NormalizeImage::Run(cv::Mat* im, ImageBlob* data) {
Q
qingqing01 已提交
32 33 34 35 36 37 38 39
  double e = 1.0;
  if (is_scale_) {
    e /= 255.0;
  }
  (*im).convertTo(*im, CV_32FC3, e);
  for (int h = 0; h < im->rows; h++) {
    for (int w = 0; w < im->cols; w++) {
      im->at<cv::Vec3f>(h, w)[0] =
40
          (im->at<cv::Vec3f>(h, w)[0] - mean_[0]) / scale_[0];
Q
qingqing01 已提交
41
      im->at<cv::Vec3f>(h, w)[1] =
42
          (im->at<cv::Vec3f>(h, w)[1] - mean_[1]) / scale_[1];
Q
qingqing01 已提交
43
      im->at<cv::Vec3f>(h, w)[2] =
44
          (im->at<cv::Vec3f>(h, w)[2] - mean_[2]) / scale_[2];
Q
qingqing01 已提交
45 46 47 48 49
    }
  }
}

void Permute::Run(cv::Mat* im, ImageBlob* data) {
50
  (*im).convertTo(*im, CV_32FC3);
Q
qingqing01 已提交
51 52 53 54 55 56 57 58 59 60 61 62 63 64
  int rh = im->rows;
  int rw = im->cols;
  int rc = im->channels();
  (data->im_data_).resize(rc * rh * rw);
  float* base = (data->im_data_).data();
  for (int i = 0; i < rc; ++i) {
    cv::extractChannel(*im, cv::Mat(rh, rw, CV_32FC1, base + i * rh * rw), i);
  }
}

void Resize::Run(cv::Mat* im, ImageBlob* data) {
  auto resize_scale = GenerateScale(*im);
  cv::resize(
      *im, *im, cv::Size(), resize_scale.first, resize_scale.second, interp_);
65 66 67

  data->in_net_shape_ = {static_cast<float>(im->rows),
                         static_cast<float>(im->cols)};
Q
qingqing01 已提交
68
  data->im_shape_ = {
69
      static_cast<float>(im->rows), static_cast<float>(im->cols),
Q
qingqing01 已提交
70 71
  };
  data->scale_factor_ = {
72
      resize_scale.second, resize_scale.first,
Q
qingqing01 已提交
73 74 75 76 77 78 79 80 81 82 83
  };
}

std::pair<float, float> Resize::GenerateScale(const cv::Mat& im) {
  std::pair<float, float> resize_scale;
  int origin_w = im.cols;
  int origin_h = im.rows;

  if (keep_ratio_) {
    int im_size_max = std::max(origin_w, origin_h);
    int im_size_min = std::min(origin_w, origin_h);
84 85 86 87
    int target_size_max =
        *std::max_element(target_size_.begin(), target_size_.end());
    int target_size_min =
        *std::min_element(target_size_.begin(), target_size_.end());
Q
qingqing01 已提交
88 89 90 91 92 93 94 95 96 97 98 99 100 101 102
    float scale_min =
        static_cast<float>(target_size_min) / static_cast<float>(im_size_min);
    float scale_max =
        static_cast<float>(target_size_max) / static_cast<float>(im_size_max);
    float scale_ratio = std::min(scale_min, scale_max);
    resize_scale = {scale_ratio, scale_ratio};
  } else {
    resize_scale.first =
        static_cast<float>(target_size_[1]) / static_cast<float>(origin_w);
    resize_scale.second =
        static_cast<float>(target_size_[0]) / static_cast<float>(origin_h);
  }
  return resize_scale;
}

103 104 105 106
void LetterBoxResize::Run(cv::Mat* im, ImageBlob* data) {
  float resize_scale = GenerateScale(*im);
  int new_shape_w = std::round(im->cols * resize_scale);
  int new_shape_h = std::round(im->rows * resize_scale);
107 108
  data->im_shape_ = {static_cast<float>(new_shape_h),
                     static_cast<float>(new_shape_w)};
109 110
  float padw = (target_size_[1] - new_shape_w) / 2.;
  float padh = (target_size_[0] - new_shape_h) / 2.;
111

112 113 114 115 116 117
  int top = std::round(padh - 0.1);
  int bottom = std::round(padh + 0.1);
  int left = std::round(padw - 0.1);
  int right = std::round(padw + 0.1);

  cv::resize(
118
      *im, *im, cv::Size(new_shape_w, new_shape_h), 0, 0, cv::INTER_AREA);
119 120

  data->in_net_shape_ = {
121
      static_cast<float>(im->rows), static_cast<float>(im->cols),
122
  };
123 124 125 126 127 128 129 130
  cv::copyMakeBorder(*im,
                     *im,
                     top,
                     bottom,
                     left,
                     right,
                     cv::BORDER_CONSTANT,
                     cv::Scalar(127.5));
131 132

  data->in_net_shape_ = {
133
      static_cast<float>(im->rows), static_cast<float>(im->cols),
134 135 136
  };

  data->scale_factor_ = {
137
      resize_scale, resize_scale,
138 139 140 141 142 143 144 145 146 147 148 149
  };
}

float LetterBoxResize::GenerateScale(const cv::Mat& im) {
  int origin_w = im.cols;
  int origin_h = im.rows;

  int target_h = target_size_[0];
  int target_w = target_size_[1];

  float ratio_h = static_cast<float>(target_h) / static_cast<float>(origin_h);
  float ratio_w = static_cast<float>(target_w) / static_cast<float>(origin_w);
150
  float resize_scale = std::min(ratio_h, ratio_w);
151 152 153
  return resize_scale;
}

Q
qingqing01 已提交
154 155
void PadStride::Run(cv::Mat* im, ImageBlob* data) {
  if (stride_ <= 0) {
156
    data->in_net_im_ = im->clone();
Q
qingqing01 已提交
157 158 159 160 161 162 163 164
    return;
  }
  int rc = im->channels();
  int rh = im->rows;
  int rw = im->cols;
  int nh = (rh / stride_) * stride_ + (rh % stride_ != 0) * stride_;
  int nw = (rw / stride_) * stride_ + (rw % stride_ != 0) * stride_;
  cv::copyMakeBorder(
165 166
      *im, *im, 0, nh - rh, 0, nw - rw, cv::BORDER_CONSTANT, cv::Scalar(0));
  data->in_net_im_ = im->clone();
167
  data->in_net_shape_ = {
168
      static_cast<float>(im->rows), static_cast<float>(im->cols),
Q
qingqing01 已提交
169 170 171
  };
}

172
void TopDownEvalAffine::Run(cv::Mat* im, ImageBlob* data) {
173
  cv::resize(*im, *im, cv::Size(trainsize_[0], trainsize_[1]), 0, 0, interp_);
174 175
  // todo: Simd::ResizeBilinear();
  data->in_net_shape_ = {
176
      static_cast<float>(trainsize_[1]), static_cast<float>(trainsize_[0]),
177 178
  };
}
Q
qingqing01 已提交
179 180

// Preprocessor op running order
181 182 183 184 185 186 187
const std::vector<std::string> Preprocessor::RUN_ORDER = {"InitInfo",
                                                          "TopDownEvalAffine",
                                                          "Resize",
                                                          "LetterBoxResize",
                                                          "NormalizeImage",
                                                          "PadStride",
                                                          "Permute"};
Q
qingqing01 已提交
188 189 190 191 192 193 194 195 196

void Preprocessor::Run(cv::Mat* im, ImageBlob* data) {
  for (const auto& name : RUN_ORDER) {
    if (ops_.find(name) != ops_.end()) {
      ops_[name]->Run(im, data);
    }
  }
}

197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217
void CropImg(cv::Mat& img,
             cv::Mat& crop_img,
             std::vector<int>& area,
             std::vector<float>& center,
             std::vector<float>& scale,
             float expandratio) {
  int crop_x1 = std::max(0, area[0]);
  int crop_y1 = std::max(0, area[1]);
  int crop_x2 = std::min(img.cols - 1, area[2]);
  int crop_y2 = std::min(img.rows - 1, area[3]);
  int center_x = (crop_x1 + crop_x2) / 2.;
  int center_y = (crop_y1 + crop_y2) / 2.;
  int half_h = (crop_y2 - crop_y1) / 2.;
  int half_w = (crop_x2 - crop_x1) / 2.;

  // adjust h or w to keep image ratio, expand the shorter edge
  if (half_h * 3 > half_w * 4) {
    half_w = static_cast<int>(half_h * 0.75);
  } else {
    half_h = static_cast<int>(half_w * 4 / 3);
  }
218

219 220 221 222 223 224 225 226 227 228
  crop_x1 =
      std::max(0, center_x - static_cast<int>(half_w * (1 + expandratio)));
  crop_y1 =
      std::max(0, center_y - static_cast<int>(half_h * (1 + expandratio)));
  crop_x2 = std::min(img.cols - 1,
                     static_cast<int>(center_x + half_w * (1 + expandratio)));
  crop_y2 = std::min(img.rows - 1,
                     static_cast<int>(center_y + half_h * (1 + expandratio)));
  crop_img =
      img(cv::Range(crop_y1, crop_y2 + 1), cv::Range(crop_x1, crop_x2 + 1));
229

230 231 232 233 234 235 236 237
  center.clear();
  center.emplace_back((crop_x1 + crop_x2) / 2);
  center.emplace_back((crop_y1 + crop_y2) / 2);

  scale.clear();
  scale.emplace_back((crop_x2 - crop_x1));
  scale.emplace_back((crop_y2 - crop_y1));
}
238

239 240 241 242 243 244
bool CheckDynamicInput(const std::vector<cv::Mat>& imgs) {
  if (imgs.size() == 1) return false;

  int h = imgs.at(0).rows;
  int w = imgs.at(0).cols;
  for (int i = 1; i < imgs.size(); ++i) {
245 246 247
    int hi = imgs.at(i).rows;
    int wi = imgs.at(i).cols;
    if (hi != h || wi != w) {
248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279
      return true;
    }
  }
  return false;
}

std::vector<cv::Mat> PadBatch(const std::vector<cv::Mat>& imgs) {
  std::vector<cv::Mat> out_imgs;
  int max_h = 0;
  int max_w = 0;
  int rh = 0;
  int rw = 0;
  // find max_h and max_w in batch
  for (int i = 0; i < imgs.size(); ++i) {
    rh = imgs.at(i).rows;
    rw = imgs.at(i).cols;
    if (rh > max_h) max_h = rh;
    if (rw > max_w) max_w = rw;
  }
  for (int i = 0; i < imgs.size(); ++i) {
    cv::Mat im = imgs.at(i);
    cv::copyMakeBorder(im,
                       im,
                       0,
                       max_h - imgs.at(i).rows,
                       0,
                       max_w - imgs.at(i).cols,
                       cv::BORDER_CONSTANT,
                       cv::Scalar(0));
    out_imgs.push_back(im);
  }
  return out_imgs;
280 281
}

Q
qingqing01 已提交
282
}  // namespace PaddleDetection