ppyoloe_crn_x_300e_battery_1024.yml 3.2 KB
Newer Older
W
wangguanzhong 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140
weights: output/ppyoloe_crn_x_300e_battery_1024/model_final
pretrain_weights: https://paddledet.bj.bcebos.com/models/ppyoloe_crn_x_300e_coco.pdparams
depth_mult: 1.33
width_mult: 1.25

worker_num: 4
eval_height: &eval_height 1024
eval_width: &eval_width 1024
eval_size: &eval_size [*eval_height, *eval_width]

metric: COCO
num_classes: 45

TrainDataset:
  !COCODataSet
    image_dir: images
    anno_path: annotations/train.json
    dataset_dir: dataset/battery_mini
    data_fields: ['image', 'gt_bbox', 'gt_class', 'is_crowd']

EvalDataset:
  !COCODataSet
    image_dir: images
    anno_path: annotations/test.json
    dataset_dir: dataset/battery_mini

TestDataset:
  !ImageFolder
    anno_path: annotations/test.json
    dataset_dir: dataset/battery_mini

epoch: 30
LearningRate:
  base_lr: 0.0005
  schedulers:
    - !CosineDecay
      max_epochs: 36
    - !LinearWarmup
      start_factor: 0.
      epochs: 3

TrainReader:
  sample_transforms:
    - Decode: {}
    - RandomFlip: {}
  batch_transforms:
    - BatchRandomResize: {target_size: [960, 992, 1024, 1056, 1088], random_size: True, random_interp: True, keep_ratio: False}
    - NormalizeImage: {mean: [0.485, 0.456, 0.406], std: [0.229, 0.224, 0.225], is_scale: True}
    - Permute: {}
    - PadGT: {}
  batch_size: 4
  shuffle: true
  drop_last: true
  use_shared_memory: true
  collate_batch: true

EvalReader:
  sample_transforms:
    - Decode: {}
    - Resize: {target_size: *eval_size, keep_ratio: False, interp: 2}
    - NormalizeImage: {mean: [0.485, 0.456, 0.406], std: [0.229, 0.224, 0.225], is_scale: True}
    - Permute: {}
  batch_size: 1

TestReader:
  inputs_def:
    image_shape: [3, *eval_height, *eval_width]
  sample_transforms:
    - Decode: {}
    - Resize: {target_size: *eval_size, keep_ratio: False, interp: 2}
    - NormalizeImage: {mean: [0.485, 0.456, 0.406], std: [0.229, 0.224, 0.225], is_scale: True}
    - Permute: {}
  batch_size: 1

use_gpu: true
use_xpu: false
log_iter: 100
save_dir: output
snapshot_epoch: 5
print_flops: false

# Exporting the model
export:
  post_process: True  # Whether post-processing is included in the network when export model.
  nms: True           # Whether NMS is included in the network when export model.
  benchmark: False    # It is used to testing model performance, if set `True`, post-process and NMS will not be exported.

OptimizerBuilder:
  optimizer:
    momentum: 0.9
    type: Momentum
  regularizer:
    factor: 0.0005
    type: L2

architecture: YOLOv3
norm_type: sync_bn
use_ema: true
ema_decay: 0.9998

YOLOv3:
  backbone: CSPResNet
  neck: CustomCSPPAN
  yolo_head: PPYOLOEHead
  post_process: ~

CSPResNet:
  layers: [3, 6, 6, 3]
  channels: [64, 128, 256, 512, 1024]
  return_idx: [1, 2, 3]
  use_large_stem: True

CustomCSPPAN:
  out_channels: [768, 384, 192]
  stage_num: 1
  block_num: 3
  act: 'swish'
  spp: true

PPYOLOEHead:
  fpn_strides: [32, 16, 8]
  grid_cell_scale: 5.0
  grid_cell_offset: 0.5
  static_assigner_epoch: 100
  use_varifocal_loss: True
  loss_weight: {class: 1.0, iou: 2.5, dfl: 0.5}
  static_assigner:
    name: ATSSAssigner
    topk: 9
  assigner:
    name: TaskAlignedAssigner
    topk: 13
    alpha: 1.0
    beta: 6.0
  nms:
    name: MultiClassNMS
    nms_top_k: 1000
    keep_top_k: 100
    score_threshold: 0.01
    nms_threshold: 0.6