op_helper.py 14.9 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# this file contains helper methods for BBOX processing

from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

import numpy as np
21 22 23
import random
import math
import cv2
24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45


def meet_emit_constraint(src_bbox, sample_bbox):
    center_x = (src_bbox[2] + src_bbox[0]) / 2
    center_y = (src_bbox[3] + src_bbox[1]) / 2
    if center_x >= sample_bbox[0] and \
            center_x <= sample_bbox[2] and \
            center_y >= sample_bbox[1] and \
            center_y <= sample_bbox[3]:
        return True
    return False


def clip_bbox(src_bbox):
    src_bbox[0] = max(min(src_bbox[0], 1.0), 0.0)
    src_bbox[1] = max(min(src_bbox[1], 1.0), 0.0)
    src_bbox[2] = max(min(src_bbox[2], 1.0), 0.0)
    src_bbox[3] = max(min(src_bbox[3], 1.0), 0.0)
    return src_bbox


def bbox_area(src_bbox):
46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61
    if src_bbox[2] < src_bbox[0] or src_bbox[3] < src_bbox[1]:
        return 0.
    else:
        width = src_bbox[2] - src_bbox[0]
        height = src_bbox[3] - src_bbox[1]
        return width * height


def is_overlap(object_bbox, sample_bbox):
    if object_bbox[0] >= sample_bbox[2] or \
       object_bbox[2] <= sample_bbox[0] or \
       object_bbox[1] >= sample_bbox[3] or \
       object_bbox[3] <= sample_bbox[1]:
        return False
    else:
        return True
62 63 64 65 66 67


def filter_and_process(sample_bbox, bboxes, labels, scores=None):
    new_bboxes = []
    new_labels = []
    new_scores = []
68
    for i in range(len(bboxes)):
69 70 71 72
        new_bbox = [0, 0, 0, 0]
        obj_bbox = [bboxes[i][0], bboxes[i][1], bboxes[i][2], bboxes[i][3]]
        if not meet_emit_constraint(obj_bbox, sample_bbox):
            continue
73 74
        if not is_overlap(obj_bbox, sample_bbox):
            continue
75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92
        sample_width = sample_bbox[2] - sample_bbox[0]
        sample_height = sample_bbox[3] - sample_bbox[1]
        new_bbox[0] = (obj_bbox[0] - sample_bbox[0]) / sample_width
        new_bbox[1] = (obj_bbox[1] - sample_bbox[1]) / sample_height
        new_bbox[2] = (obj_bbox[2] - sample_bbox[0]) / sample_width
        new_bbox[3] = (obj_bbox[3] - sample_bbox[1]) / sample_height
        new_bbox = clip_bbox(new_bbox)
        if bbox_area(new_bbox) > 0:
            new_bboxes.append(new_bbox)
            new_labels.append([labels[i][0]])
            if scores is not None:
                new_scores.append([scores[i][0]])
    bboxes = np.array(new_bboxes)
    labels = np.array(new_labels)
    scores = np.array(new_scores)
    return bboxes, labels, scores


93 94 95 96 97 98 99 100 101 102 103 104
def bbox_area_sampling(bboxes, labels, scores, target_size, min_size):
    new_bboxes = []
    new_labels = []
    new_scores = []
    for i, bbox in enumerate(bboxes):
        w = float((bbox[2] - bbox[0]) * target_size)
        h = float((bbox[3] - bbox[1]) * target_size)
        if w * h < float(min_size * min_size):
            continue
        else:
            new_bboxes.append(bbox)
            new_labels.append(labels[i])
105 106
            if scores is not None and scores.size != 0:
                new_scores.append(scores[i])
107 108 109 110 111 112
    bboxes = np.array(new_bboxes)
    labels = np.array(new_labels)
    scores = np.array(new_scores)
    return bboxes, labels, scores


113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129
def generate_sample_bbox(sampler):
    scale = np.random.uniform(sampler[2], sampler[3])
    aspect_ratio = np.random.uniform(sampler[4], sampler[5])
    aspect_ratio = max(aspect_ratio, (scale**2.0))
    aspect_ratio = min(aspect_ratio, 1 / (scale**2.0))
    bbox_width = scale * (aspect_ratio**0.5)
    bbox_height = scale / (aspect_ratio**0.5)
    xmin_bound = 1 - bbox_width
    ymin_bound = 1 - bbox_height
    xmin = np.random.uniform(0, xmin_bound)
    ymin = np.random.uniform(0, ymin_bound)
    xmax = xmin + bbox_width
    ymax = ymin + bbox_height
    sampled_bbox = [xmin, ymin, xmax, ymax]
    return sampled_bbox


130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235
def generate_sample_bbox_square(sampler, image_width, image_height):
    scale = np.random.uniform(sampler[2], sampler[3])
    aspect_ratio = np.random.uniform(sampler[4], sampler[5])
    aspect_ratio = max(aspect_ratio, (scale**2.0))
    aspect_ratio = min(aspect_ratio, 1 / (scale**2.0))
    bbox_width = scale * (aspect_ratio**0.5)
    bbox_height = scale / (aspect_ratio**0.5)
    if image_height < image_width:
        bbox_width = bbox_height * image_height / image_width
    else:
        bbox_height = bbox_width * image_width / image_height
    xmin_bound = 1 - bbox_width
    ymin_bound = 1 - bbox_height
    xmin = np.random.uniform(0, xmin_bound)
    ymin = np.random.uniform(0, ymin_bound)
    xmax = xmin + bbox_width
    ymax = ymin + bbox_height
    sampled_bbox = [xmin, ymin, xmax, ymax]
    return sampled_bbox


def data_anchor_sampling(bbox_labels, image_width, image_height, scale_array,
                         resize_width):
    num_gt = len(bbox_labels)
    # np.random.randint range: [low, high)
    rand_idx = np.random.randint(0, num_gt) if num_gt != 0 else 0

    if num_gt != 0:
        norm_xmin = bbox_labels[rand_idx][0]
        norm_ymin = bbox_labels[rand_idx][1]
        norm_xmax = bbox_labels[rand_idx][2]
        norm_ymax = bbox_labels[rand_idx][3]

        xmin = norm_xmin * image_width
        ymin = norm_ymin * image_height
        wid = image_width * (norm_xmax - norm_xmin)
        hei = image_height * (norm_ymax - norm_ymin)
        range_size = 0

        area = wid * hei
        for scale_ind in range(0, len(scale_array) - 1):
            if area > scale_array[scale_ind] ** 2 and area < \
                    scale_array[scale_ind + 1] ** 2:
                range_size = scale_ind + 1
                break

        if area > scale_array[len(scale_array) - 2]**2:
            range_size = len(scale_array) - 2

        scale_choose = 0.0
        if range_size == 0:
            rand_idx_size = 0
        else:
            # np.random.randint range: [low, high)
            rng_rand_size = np.random.randint(0, range_size + 1)
            rand_idx_size = rng_rand_size % (range_size + 1)

        if rand_idx_size == range_size:
            min_resize_val = scale_array[rand_idx_size] / 2.0
            max_resize_val = min(2.0 * scale_array[rand_idx_size],
                                 2 * math.sqrt(wid * hei))
            scale_choose = random.uniform(min_resize_val, max_resize_val)
        else:
            min_resize_val = scale_array[rand_idx_size] / 2.0
            max_resize_val = 2.0 * scale_array[rand_idx_size]
            scale_choose = random.uniform(min_resize_val, max_resize_val)

        sample_bbox_size = wid * resize_width / scale_choose

        w_off_orig = 0.0
        h_off_orig = 0.0
        if sample_bbox_size < max(image_height, image_width):
            if wid <= sample_bbox_size:
                w_off_orig = np.random.uniform(xmin + wid - sample_bbox_size,
                                               xmin)
            else:
                w_off_orig = np.random.uniform(xmin,
                                               xmin + wid - sample_bbox_size)

            if hei <= sample_bbox_size:
                h_off_orig = np.random.uniform(ymin + hei - sample_bbox_size,
                                               ymin)
            else:
                h_off_orig = np.random.uniform(ymin,
                                               ymin + hei - sample_bbox_size)

        else:
            w_off_orig = np.random.uniform(image_width - sample_bbox_size, 0.0)
            h_off_orig = np.random.uniform(image_height - sample_bbox_size, 0.0)

        w_off_orig = math.floor(w_off_orig)
        h_off_orig = math.floor(h_off_orig)

        # Figure out top left coordinates.
        w_off = float(w_off_orig / image_width)
        h_off = float(h_off_orig / image_height)

        sampled_bbox = [
            w_off, h_off, w_off + float(sample_bbox_size / image_width),
            h_off + float(sample_bbox_size / image_height)
        ]
        return sampled_bbox
    else:
        return 0


236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254
def jaccard_overlap(sample_bbox, object_bbox):
    if sample_bbox[0] >= object_bbox[2] or \
        sample_bbox[2] <= object_bbox[0] or \
        sample_bbox[1] >= object_bbox[3] or \
        sample_bbox[3] <= object_bbox[1]:
        return 0
    intersect_xmin = max(sample_bbox[0], object_bbox[0])
    intersect_ymin = max(sample_bbox[1], object_bbox[1])
    intersect_xmax = min(sample_bbox[2], object_bbox[2])
    intersect_ymax = min(sample_bbox[3], object_bbox[3])
    intersect_size = (intersect_xmax - intersect_xmin) * (
        intersect_ymax - intersect_ymin)
    sample_bbox_size = bbox_area(sample_bbox)
    object_bbox_size = bbox_area(object_bbox)
    overlap = intersect_size / (
        sample_bbox_size + object_bbox_size - intersect_size)
    return overlap


255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277
def intersect_bbox(bbox1, bbox2):
    if bbox2[0] > bbox1[2] or bbox2[2] < bbox1[0] or \
        bbox2[1] > bbox1[3] or bbox2[3] < bbox1[1]:
        intersection_box = [0.0, 0.0, 0.0, 0.0]
    else:
        intersection_box = [
            max(bbox1[0], bbox2[0]), max(bbox1[1], bbox2[1]),
            min(bbox1[2], bbox2[2]), min(bbox1[3], bbox2[3])
        ]
    return intersection_box


def bbox_coverage(bbox1, bbox2):
    inter_box = intersect_bbox(bbox1, bbox2)
    intersect_size = bbox_area(inter_box)

    if intersect_size > 0:
        bbox1_size = bbox_area(bbox1)
        return intersect_size / bbox1_size
    else:
        return 0.


278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305
def satisfy_sample_constraint(sampler,
                              sample_bbox,
                              gt_bboxes,
                              satisfy_all=False):
    if sampler[6] == 0 and sampler[7] == 0:
        return True
    satisfied = []
    for i in range(len(gt_bboxes)):
        object_bbox = [
            gt_bboxes[i][0], gt_bboxes[i][1], gt_bboxes[i][2], gt_bboxes[i][3]
        ]
        overlap = jaccard_overlap(sample_bbox, object_bbox)
        if sampler[6] != 0 and \
                overlap < sampler[6]:
            satisfied.append(False)
            continue
        if sampler[7] != 0 and \
                overlap > sampler[7]:
            satisfied.append(False)
            continue
        satisfied.append(True)
        if not satisfy_all:
            return True

    if satisfy_all:
        return np.all(satisfied)
    else:
        return False
306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389


def satisfy_sample_constraint_coverage(sampler, sample_bbox, gt_bboxes):
    if sampler[6] == 0 and sampler[7] == 0:
        has_jaccard_overlap = False
    else:
        has_jaccard_overlap = True
    if sampler[8] == 0 and sampler[9] == 0:
        has_object_coverage = False
    else:
        has_object_coverage = True

    if not has_jaccard_overlap and not has_object_coverage:
        return True
    found = False
    for i in range(len(gt_bboxes)):
        object_bbox = [
            gt_bboxes[i][0], gt_bboxes[i][1], gt_bboxes[i][2], gt_bboxes[i][3]
        ]
        if has_jaccard_overlap:
            overlap = jaccard_overlap(sample_bbox, object_bbox)
            if sampler[6] != 0 and \
                    overlap < sampler[6]:
                continue
            if sampler[7] != 0 and \
                    overlap > sampler[7]:
                continue
            found = True
        if has_object_coverage:
            object_coverage = bbox_coverage(object_bbox, sample_bbox)
            if sampler[8] != 0 and \
                    object_coverage < sampler[8]:
                continue
            if sampler[9] != 0 and \
                    object_coverage > sampler[9]:
                continue
            found = True
        if found:
            return True
    return found


def crop_image_sampling(img, sample_bbox, image_width, image_height,
                        target_size):
    # no clipping here
    xmin = int(sample_bbox[0] * image_width)
    xmax = int(sample_bbox[2] * image_width)
    ymin = int(sample_bbox[1] * image_height)
    ymax = int(sample_bbox[3] * image_height)

    w_off = xmin
    h_off = ymin
    width = xmax - xmin
    height = ymax - ymin
    cross_xmin = max(0.0, float(w_off))
    cross_ymin = max(0.0, float(h_off))
    cross_xmax = min(float(w_off + width - 1.0), float(image_width))
    cross_ymax = min(float(h_off + height - 1.0), float(image_height))
    cross_width = cross_xmax - cross_xmin
    cross_height = cross_ymax - cross_ymin

    roi_xmin = 0 if w_off >= 0 else abs(w_off)
    roi_ymin = 0 if h_off >= 0 else abs(h_off)
    roi_width = cross_width
    roi_height = cross_height

    roi_y1 = int(roi_ymin)
    roi_y2 = int(roi_ymin + roi_height)
    roi_x1 = int(roi_xmin)
    roi_x2 = int(roi_xmin + roi_width)

    cross_y1 = int(cross_ymin)
    cross_y2 = int(cross_ymin + cross_height)
    cross_x1 = int(cross_xmin)
    cross_x2 = int(cross_xmin + cross_width)

    sample_img = np.zeros((height, width, 3))
    sample_img[roi_y1: roi_y2, roi_x1: roi_x2] = \
        img[cross_y1: cross_y2, cross_x1: cross_x2]

    sample_img = cv2.resize(
        sample_img, (target_size, target_size), interpolation=cv2.INTER_AREA)

    return sample_img
390 391 392 393 394 395


def is_poly(segm):
    assert isinstance(segm, (list, dict)), \
        "Invalid segm type: {}".format(type(segm))
    return isinstance(segm, list)
W
wangguanzhong 已提交
396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444


def gaussian_radius(bbox_size, min_overlap):
    height, width = bbox_size

    a1 = 1
    b1 = (height + width)
    c1 = width * height * (1 - min_overlap) / (1 + min_overlap)
    sq1 = np.sqrt(b1**2 - 4 * a1 * c1)
    radius1 = (b1 - sq1) / (2 * a1)

    a2 = 4
    b2 = 2 * (height + width)
    c2 = (1 - min_overlap) * width * height
    sq2 = np.sqrt(b2**2 - 4 * a2 * c2)
    radius2 = (b2 - sq2) / (2 * a2)

    a3 = 4 * min_overlap
    b3 = -2 * min_overlap * (height + width)
    c3 = (min_overlap - 1) * width * height
    sq3 = np.sqrt(b3**2 - 4 * a3 * c3)
    radius3 = (b3 + sq3) / (2 * a3)
    return min(radius1, radius2, radius3)


def draw_gaussian(heatmap, center, radius, k=1, delte=6):
    diameter = 2 * radius + 1
    gaussian = gaussian2D((diameter, diameter), sigma=diameter / delte)

    x, y = center

    height, width = heatmap.shape[0:2]

    left, right = min(x, radius), min(width - x, radius + 1)
    top, bottom = min(y, radius), min(height - y, radius + 1)

    masked_heatmap = heatmap[y - top:y + bottom, x - left:x + right]
    masked_gaussian = gaussian[radius - top:radius + bottom, radius - left:
                               radius + right]
    np.maximum(masked_heatmap, masked_gaussian * k, out=masked_heatmap)


def gaussian2D(shape, sigma=1):
    m, n = [(ss - 1.) / 2. for ss in shape]
    y, x = np.ogrid[-m:m + 1, -n:n + 1]

    h = np.exp(-(x * x + y * y) / (2 * sigma * sigma))
    h[h < np.finfo(h.dtype).eps * h.max()] = 0
    return h