clip.py 11.7 KB
Newer Older
1
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
D
dzhwinter 已提交
2
#
F
fengjiayi 已提交
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
D
dzhwinter 已提交
6
#
D
dzhwinter 已提交
7
#     http://www.apache.org/licenses/LICENSE-2.0
D
dzhwinter 已提交
8
#
F
fengjiayi 已提交
9 10 11 12 13
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
F
update  
fengjiayi 已提交
14

F
fengjiayi 已提交
15 16
import copy

Y
Yu Yang 已提交
17
import functools
18 19
from . import layers
from . import framework
F
fengjiayi 已提交
20
from . import core
Y
Yu Yang 已提交
21

F
fengjiayi 已提交
22
__all__ = [
23
    'ErrorClipByValue',
F
fengjiayi 已提交
24 25 26
    'GradientClipByValue',
    'GradientClipByNorm',
    'GradientClipByGlobalNorm',
F
fengjiayi 已提交
27
]
Y
Yu Yang 已提交
28 29


F
fengjiayi 已提交
30
class BaseErrorClipAttr(object):
F
fengjiayi 已提交
31 32 33
    def __str__(self):
        raise NotImplementedError()

Y
yuyang18 已提交
34
    def _append_clip_op(self, block, grad_name):
F
fengjiayi 已提交
35 36 37 38
        raise NotImplementedError()


class ErrorClipByValue(BaseErrorClipAttr):
39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57
    """
    Clips tensor values to the range [min, max].

    Given a tensor t, this operation clips its value to min and max inplace.

    - Any values less than min are set to min.
    - Any values greater than max are set to max.

    Args:
        max (float): The maximum value to clip by.
        min (float, optional): The minimum value to clip by. if not set by user, \
        will be set to -max by framework.

    Examples:
        .. code-block:: python

            var = fluid.framework.Variable(..., error_clip=ErrorClipByValue(max=5.0), ...)
    """

F
fengjiayi 已提交
58 59 60 61 62 63 64 65 66
    def __init__(self, max, min=None):
        max = float(max)
        if min is None:
            min = -max
        else:
            min = float(min)
        self.max = max
        self.min = min

F
fengjiayi 已提交
67 68 69
    def __str__(self):
        return "ByValue, min=%f, max=%f" % (self.min, self.max)

Y
yuyang18 已提交
70
    def _append_clip_op(self, block, grad_name):
71 72 73 74 75 76
        clip_op_desc = block.desc.append_op()
        clip_op_desc.set_type("clip")
        clip_op_desc.set_input("X", [grad_name])
        clip_op_desc.set_output("Out", [grad_name])
        clip_op_desc.set_attr("min", self.min)
        clip_op_desc.set_attr("max", self.max)
F
fengjiayi 已提交
77 78 79 80 81 82


def error_clip_callback(block, context):
    # the context is a grad_to_var map
    grad_to_var = context
    op_desc = block.desc.op(block.desc.op_size() - 1)
83
    for grad_n in [n for n in op_desc.output_arg_names() if n in grad_to_var]:
W
Wu Yi 已提交
84
        fwd_var = block._var_recursive(grad_to_var[grad_n])
F
fengjiayi 已提交
85
        error_clip = getattr(fwd_var, "error_clip", None)
F
fengjiayi 已提交
86 87 88 89 90
        if not (error_clip is None or isinstance(error_clip,
                                                 BaseErrorClipAttr)):
            raise TypeError(
                "Variable's error_clip should be an instance of BaseErrorClipAttr or None."
            )
F
fengjiayi 已提交
91
        if error_clip is not None:
Y
yuyang18 已提交
92
            error_clip._append_clip_op(block, grad_n)
F
fengjiayi 已提交
93 94


Y
Yu Yang 已提交
95
class BaseGradientClipAttr(object):
F
fengjiayi 已提交
96 97 98
    def __str__(self):
        raise NotImplementedError()

Y
yuyang18 已提交
99
    def _process_context(self, context, param, grad):
Y
Yu Yang 已提交
100 101
        raise NotImplementedError()

Y
yuyang18 已提交
102
    def _create_operators(self, param, grad):
Y
Yu Yang 已提交
103 104 105 106
        raise NotImplementedError()


class NullGradientClipAttr(BaseGradientClipAttr):
F
fengjiayi 已提交
107 108 109
    def __str__(self):
        return "Null"

Y
yuyang18 已提交
110
    def _process_context(self, context, param, grad):
Y
Yu Yang 已提交
111 112
        pass

Y
yuyang18 已提交
113
    def _create_operators(self, param, grad):
Y
Yu Yang 已提交
114 115 116 117
        return param, grad


class GradientClipByValue(BaseGradientClipAttr):
118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142
    """
    Clips gradient values to the range [min, max].

    Given a tensor t, this operation clips its value to min and max inplace.

    - Any values less than min are set to min.
    - Any values greater than max are set to max.

    Args:
        max (float): The maximum value to clip by.
        min (float, optional): The minimum value to clip by. if not set by user, \
        will be set to -max by framework.

    Examples:
        .. code-block:: python

            w_param_attrs = ParamAttr(name=None,
              initializer=UniformInitializer(low=-1.0, high=1.0, seed=0),
              learning_rate=1.0,
              regularizer=L1Decay(1.0),
              trainable=True,
              clip=GradientClipByValue(-1.0, 1.0))
            y_predict = fluid.layers.fc(input=x, size=1, param_attr=w_param_attrs)
    """

Y
Yu Yang 已提交
143 144 145 146 147 148 149 150 151
    def __init__(self, max, min=None):
        max = float(max)
        if min is None:
            min = -max
        else:
            min = float(min)
        self.max = max
        self.min = min

F
fengjiayi 已提交
152 153 154
    def __str__(self):
        return "ByValue, min=%f, max=%f" % (self.min, self.max)

Y
yuyang18 已提交
155
    def _process_context(self, context, param, grad):
Y
Yu Yang 已提交
156 157
        pass

Y
yuyang18 已提交
158
    def _create_operators(self, param, grad):
Y
Yu Yang 已提交
159 160 161 162
        new_grad = layers.clip(x=grad, min=self.min, max=self.max)
        return param, new_grad


F
fengjiayi 已提交
163
class GradientClipByNorm(BaseGradientClipAttr):
164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194
    """
    Clips tensor values to a maximum L2-norm.

    This operator limits the L2 norm of the input :math:`X` within :math:`max\_norm`.
    If the L2 norm of :math:`X` is less than or equal to :math:`max\_norm`, :math:`Out`
    will be the same as :math:`X`. If the L2 norm of :math:`X` is greater than
    :math:`max\_norm`, :math:`X` will be linearly scaled to make the L2 norm of
    :math:`Out` equal to :math:`max\_norm`, as shown in the following formula:

    .. math::

        Out = \\frac{max\_norm * X}{norm(X)},

    where :math:`norm(X)` represents the L2 norm of :math:`X`.

    Args:
        clip_norm (float): The maximum norm value

    Examples:
        .. code-block:: python

            w_param_attrs = ParamAttr(name=None,
              initializer=UniformInitializer(low=-1.0, high=1.0, seed=0),
              learning_rate=1.0,
              regularizer=L1Decay(1.0),
              trainable=True,
              clip=GradientClipByNorm(clip_norm=2.0))
            y_predict = fluid.layers.fc(input=x, size=1, param_attr=w_param_attrs)

    """

F
fengjiayi 已提交
195 196 197
    def __init__(self, clip_norm):
        self.clip_norm = clip_norm

F
fengjiayi 已提交
198 199 200
    def __str__(self):
        return "ByNorm, clip_norm=%f" % self.clip_norm

Y
yuyang18 已提交
201
    def _process_context(self, context, param, grad):
F
fengjiayi 已提交
202 203
        pass

Y
yuyang18 已提交
204
    def _create_operators(self, param, grad):
F
fengjiayi 已提交
205 206 207 208
        new_grad = layers.clip_by_norm(x=grad, max_norm=self.clip_norm)
        return param, new_grad


F
fengjiayi 已提交
209
class GradientClipByGlobalNorm(BaseGradientClipAttr):
210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247
    """
    Clips values of multiple tensors by the ratio of the sum of their norms.

    Given a list of tensors t_list, and a clipping ratio clip_norm, this
    operation returns a list of clipped tensors list_clipped and the global
    norm (global_norm) of all tensors in t_list.

    To perform the clipping, the values :math:`t\_list[i]` are set to:

    .. math::

        t\_list[i] = t\_list[i] * \\frac{clip\_norm}{\max(global\_norm, clip\_norm)}

    where:

    .. math::

        global\_norm = \sqrt{\sum_{i=0}^{N-1}(l2norm(t\_list[i]))^2}

    If :math:`clip\_norm > global\_norm` then the entries in t_list remain as they are,
    otherwise they're all shrunk by the global ratio.

    Args:
        clip_norm (float): The maximum norm value
        group_name (str, optional): The group name for this clip.

    Examples:
        .. code-block:: python

            p_g_clip = fluid.backward.append_backward(loss=avg_cost_clip)

            with fluid.program_guard(main_program=prog_clip):
                fluid.clip.set_gradient_clip(
                    fluid.clip.GradientClipByGlobalNorm(clip_norm=2.0))
                p_g_clip = fluid.clip.append_gradient_clip_ops(p_g_clip)

    """

F
update  
fengjiayi 已提交
248
    def __init__(self, clip_norm, group_name="default_group"):
249
        if not isinstance(group_name, str):
F
update  
fengjiayi 已提交
250 251 252 253
            raise TypeError("'group_name' must be a basestring.")

        self.clip_norm = clip_norm
        self.group_name = group_name
254

F
fengjiayi 已提交
255 256 257 258
    def __str__(self):
        return "ByGlobalNorm, group_name=%s, clip_norm=%f" % (self.group_name,
                                                              self.clip_norm)

Y
yuyang18 已提交
259
    def _process_context(self, context, param, grad):
F
update  
fengjiayi 已提交
260 261 262 263 264 265 266 267 268 269
        if self.group_name not in context:
            context[self.group_name] = []
            context[self.group_name + "_clip_value"] = self.clip_norm
            context[self.group_name + "_clip"] = layers.fill_constant(
                shape=[1], dtype="float32", value=self.clip_norm)
        else:
            if not self.clip_norm == context[self.group_name + "_clip_value"]:
                raise ValueError(
                    "All parameters' 'clip_norm' of a same group should be the same"
                )
F
fengjiayi 已提交
270

F
update  
fengjiayi 已提交
271 272
        local_norm_var = layers.reduce_sum(input=layers.pow(x=grad, factor=2.0))
        context[self.group_name].append(local_norm_var)
F
fengjiayi 已提交
273

F
update  
fengjiayi 已提交
274
        self.context = context
275

Y
yuyang18 已提交
276
    def _create_operators(self, param, grad):
F
update  
fengjiayi 已提交
277 278 279 280 281 282 283
        group_scale_name = self.group_name + "_scale"
        if group_scale_name not in self.context:
            group_norm_var = layers.sums(input=self.context[self.group_name])
            layers.sqrt(x=group_norm_var, out=group_norm_var)
            clip_var = self.context[self.group_name + "_clip"]
            group_scale_var = layers.elementwise_div(
                x=clip_var,
F
fengjiayi 已提交
284
                y=layers.elementwise_max(
F
update  
fengjiayi 已提交
285
                    x=clip_var, y=group_norm_var))
286
            assert group_scale_var.shape == (1, )
F
update  
fengjiayi 已提交
287
            self.context[group_scale_name] = group_scale_var
F
fengjiayi 已提交
288

F
update  
fengjiayi 已提交
289 290
        new_grad = layers.elementwise_mul(
            x=grad, y=self.context[group_scale_name])
291
        return param, new_grad
F
fengjiayi 已提交
292 293


F
fengjiayi 已提交
294
def set_gradient_clip(clip, param_list=None, program=None):
F
fengjiayi 已提交
295
    """
296 297 298 299 300 301 302 303 304 305
    To specify parameters that require gradient clip.

    Args:
        clip(BaseGradientClipAttr): An instance of some derived class of BaseGradientClipAttr,
                which describes the type and detailed attributes of required gradient clip.
        param_list(list(Variable)): Parameters that require gradient clip.
                It can be a list of parameter or a list of parameter's name.
                When it's None, all parameters in the program will be included.
        program(Program): The program where parameters are.
                Will be the default main program when assigned with None.
F
fengjiayi 已提交
306
    """
F
fengjiayi 已提交
307 308 309 310
    if not isinstance(clip, BaseGradientClipAttr):
        raise TypeError(
            "'clip' should be an instance of BaseGradientClipAttr's derived class"
        )
F
fengjiayi 已提交
311 312 313 314
    if program is None:
        program = framework.default_main_program()
    if param_list is None:
        param_list = program.block(0).all_parameters()
315
    if all(isinstance(elem, str) for elem in param_list):
F
fengjiayi 已提交
316 317 318 319 320 321 322
        param_list = [program.block(0).var(elem) for elem in param_list]
    if not all(isinstance(elem, framework.Parameter) for elem in param_list):
        raise TypeError(
            "'param_list' should be a list of Parameter or basestring(parameter's name)."
        )

    for param in param_list:
F
fengjiayi 已提交
323
        param.gradient_clip_attr = copy.deepcopy(clip)
F
fengjiayi 已提交
324 325


326
def append_gradient_clip_ops(param_grads):
Y
Yu Yang 已提交
327
    context = dict()
328 329 330 331
    for p, g in param_grads:
        if g is None:
            continue
        with p.block.program.optimized_guard([p, g]):
Y
yuyang18 已提交
332 333 334 335 336 337 338
            clip_attr = getattr(p, 'gradient_clip_attr', NullGradientClipAttr())
            if clip_attr is None:
                clip_attr = NullGradientClipAttr()
            if not isinstance(clip_attr, BaseGradientClipAttr):
                raise TypeError(
                    "clip attribute should be an instance of BaseGradientClipAttr"
                )
Y
Yu Yang 已提交
339

Y
yuyang18 已提交
340
            clip_attr._process_context(context=context, param=p, grad=g)
Y
yuyang18 已提交
341 342

    res = []
343 344 345 346
    for p, g in param_grads:
        if g is None:
            continue
        with p.block.program.optimized_guard([p, g]):
Y
yuyang18 已提交
347
            res.append(clip_attr._create_operators(param=p, grad=g))
Y
Yu Yang 已提交
348

Y
yuyang18 已提交
349
    return res
Y
Yu Yang 已提交
350 351 352


ClipByValue = GradientClipByValue
F
fengjiayi 已提交
353 354
ClipByNorm = GradientClipByNorm
ClipByGlobalNorm = GradientClipByGlobalNorm