hl_cuda_cnn.cu 24.3 KB
Newer Older
Z
zhangjinchao01 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147
/* Copyright (c) 2016 Baidu, Inc. All Rights Reserve.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */


#include <float.h>
#include "hl_base.h"
#include "hl_cnn.h"

__global__ void KeFeature2col(size_t n, size_t height, const real* data_im,
                              size_t blockH, size_t blockW, size_t width,
                              size_t strideH, size_t strideW,
                              size_t paddingH, size_t paddingW,
                              size_t height_col, size_t width_col,
                              real* data_col) {
  size_t index =
    (blockIdx.x * gridDim.y + blockIdx.y) * blockDim.x + threadIdx.x;
  if (index < n) {
    size_t w_out = index % width_col;
    index /= width_col;
    size_t h_out = index % height_col;
    size_t channel_in = index / height_col;
    size_t channel_out = channel_in * blockH * blockW;
    size_t h_in = h_out * strideH;
    size_t w_in = w_out * strideW;

    data_col += (channel_out * height_col + h_out) * width_col + w_out;
    for (size_t i = 0; i < blockH; ++i) {
      for (size_t j = 0; j < blockW; ++j) {
        int rIdx = int(h_in+i);
        int cIdx = int(w_in+j);
        if ((rIdx-(int)paddingH) >= (int)height ||
            (rIdx-(int)paddingH) < 0 ||
            (cIdx-(int)paddingW) >= (int)width ||
            (cIdx-(int)paddingW) < 0) {
          *data_col = 0;
        } else {
          rIdx = rIdx + channel_in*height - paddingH;
          cIdx = cIdx - paddingW;
          *data_col = data_im[rIdx* width + cIdx];
        }
        data_col += height_col * width_col;
      }
    }
  }
}

void hl_expand_feature2col(const real* dataIm, size_t channels,
                           size_t height, size_t width,
                           size_t blockH, size_t blockW,
                           size_t strideH, size_t strideW,
                           size_t paddingH, size_t paddingW,
                           size_t outputH, size_t outputW,
                           real* dataCol) {
  size_t numKernels = channels * outputH * outputW;

  size_t blocks = (numKernels + 1024 -1) / 1024;
  size_t blockX = 512;
  size_t blockY = (blocks+512-1)/512;
  dim3 threads(1024, 1);
  dim3 grid(blockX, blockY);
  KeFeature2col<<< grid, threads, 0, STREAM_DEFAULT >>>
           (numKernels, height, dataIm, blockH, blockW, width,
           strideH, strideW, paddingH, paddingW,
           outputH, outputW, dataCol);
  CHECK_SYNC("hl_expand_feature2col failed");
}

__global__ void KeCol2Feature(size_t n, const real* data_col, size_t height,
                              size_t width, size_t channels,
                              size_t blockH, size_t blockW,
                              size_t strideH, size_t strideW,
                              size_t paddingH, size_t paddingW,
                              size_t height_col, size_t width_col,
                              real* data_im, real alpha, real beta) {
  size_t index =
    (blockIdx.x * gridDim.y + blockIdx.y) * blockDim.x + threadIdx.x;
  if (index < n) {
    real val = 0;
    int w = int(index % width);
    int h = int((index / width) % height);
    int c = int(index / (width * height));
    if ((w - (int)paddingW) >= 0 &&
        (w - (int)paddingW) < (width-2 * paddingW) &&
        (h - (int)paddingH) >= 0 &&
        (h - paddingH) < (height - 2 * paddingH)) {
      // compute the start and end of the output
      int w_col_start =
        (w < (int)blockW) ? 0 : (w - int(blockW)) / (int)strideW + 1;
      int w_col_end =
        min((int)(w / (int)strideW + 1), (int)(width_col));
      int h_col_start =
        (h < (int)blockH) ? 0 : (h - (int)blockH) / (int)strideH + 1;
      int h_col_end = min(int(h / strideH + 1), int(height_col));
      for (int h_col = h_col_start; h_col < h_col_end; ++h_col) {
        for (int w_col = w_col_start; w_col < w_col_end; ++w_col) {
          // the col location: [c * width * height + h_out, w_out]
          int c_col = int(c * blockH* blockW) + \
            (h - h_col * (int)strideH) * (int)blockW +
            (w - w_col * (int)strideW);
          val += data_col[(c_col * height_col + h_col) * width_col + w_col];
        }
      }
      h -= paddingH;
      w -= paddingW;
      real tD = data_im[c*((width-2*paddingW) * (height-2*paddingH)) +
                          h*(width-2*paddingW) + w];
      data_im[c*((width-2*paddingW) * (height-2*paddingH)) +
              h*(width-2*paddingW) + w] = alpha * val + beta*tD;
    }
  }
}

void hl_shrink_col2feature(const real * dataCol, size_t channels,
                           size_t height, size_t width,
                           size_t blockH, size_t blockW,
                           size_t strideH, size_t strideW,
                           size_t paddingH, size_t paddingW,
                           size_t outputH, size_t outputW,
                           real* dataIm, real alpha, real beta) {
  size_t numKernels = channels * (height + 2*paddingH) * (width + 2*paddingW);

  size_t blocks = (numKernels + 1024 -1) / 1024;
  size_t blockX = 512;
  size_t blockY = (blocks+512-1)/512;
  dim3 threads(1024, 1);
  dim3 grid(blockX, blockY);

  // To avoid involving atomic operations, we will launch one kernel per
  // bottom dimension, and then in the kernel add up the top dimensions.
  KeCol2Feature<<< grid, threads, 0, STREAM_DEFAULT >>>
           (numKernels, dataCol, height + 2*paddingH, width + 2*paddingW,
           channels, blockH, blockW, strideH, strideW, paddingH, paddingW,
           outputH, outputW, dataIm, alpha, beta);
  CHECK_SYNC("hl_shrink_col2feature failed");
}

148 149 150 151 152 153 154
__global__ void KeMaxPoolForward(const int nthreads, const real* inputData,
                                 const int channels, const int height,
                                 const int width,
                                 const int pooledH, const int pooledW,
                                 const int ksizeW, const int ksizeH,
                                 const int strideH, const int strideW,
                                 const int offsetH, const int offsetW,
Q
qijun 已提交
155
                                 real* tgtData, const int tgtStride) {
156
  int index =  blockIdx.x * blockDim.x + threadIdx.x;
Z
zhangjinchao01 已提交
157 158 159 160
  if (index < nthreads) {
    int pw = index % pooledW;
    int ph = (index / pooledW) % pooledH;
    int c = (index / pooledW / pooledH) % channels;
161 162 163 164 165 166 167
    int frameNum = index / pooledW / pooledH / channels;
    int hstart = ph * strideH - offsetH;
    int wstart = pw * strideW - offsetW;
    int hend = min(hstart + ksizeH, height);
    int wend = min(wstart + ksizeW, width);
    hstart = max(hstart, 0);
    wstart = max(wstart, 0);
Z
zhangjinchao01 已提交
168 169 170 171 172 173 174 175
    real maxval = -FLT_MAX;
    inputData += (frameNum * channels + c) * height * width;
    for (int h = hstart; h < hend; ++h) {
      for (int w = wstart; w < wend; ++w) {
        if (maxval < inputData[h * width + w])
          maxval = inputData[h * width + w];
      }
    }
Q
qijun 已提交
176 177 178
    int tgtIndex = index % (pooledW * pooledH * channels) +
        frameNum * tgtStride;
    tgtData[tgtIndex] = maxval;
Z
zhangjinchao01 已提交
179 180 181
  }
}

182 183 184 185 186 187 188
void hl_maxpool_forward(const int frameCnt, const real* inputData,
                        const int channels,
                        const int height, const int width,
                        const int pooledH, const int pooledW,
                        const int sizeX, const int sizeY,
                        const int strideH, const int strideW,
                        const int paddingH, const int paddingW,
Q
qijun 已提交
189
                        real* tgtData, const int tgtStride) {
190 191 192

  int num_kernels = pooledH * pooledW * channels * frameCnt;
  int blocks = (num_kernels + 1024 - 1) / 1024;
Z
zhangjinchao01 已提交
193
  dim3 threads(1024, 1);
194 195
  dim3 grid(blocks, 1);

Z
zhangjinchao01 已提交
196 197
  KeMaxPoolForward<<< grid, threads, 0, STREAM_DEFAULT >>>
           (num_kernels, inputData, channels, height, width,
198
           pooledH, pooledW, sizeX, sizeY, strideH, strideW,
Q
qijun 已提交
199
           paddingH, paddingW, tgtData, tgtStride);
Z
zhangjinchao01 已提交
200 201 202
  CHECK_SYNC("hl_maxpool_forward failed");
}

203
__global__ void KeMaxPoolBackward(const int nthreads, const real* inputData,
Z
zhangjinchao01 已提交
204
                                  const real* outData, const real* outGrad,
205 206 207 208 209 210 211
                                  const int channels, const int height,
                                  const int width,
                                  const int pooledH, const int pooledW,
                                  const int sizeX, const int sizeY,
                                  const int strideH, const int strideW,
                                  const int padH, const int padW,
                                  real scaleA, real scaleB,
Q
qijun 已提交
212
                                  real* targetGrad, const int outStride) {
213
  int index = blockIdx.x  * blockDim.x + threadIdx.x;
Z
zhangjinchao01 已提交
214 215 216
  if (index < nthreads) {
    // find out the local index
    // find out the local offset
217 218
    int offsetW = index % width + padW;
    int offsetH = (index / width) % height + padH;
Z
zhangjinchao01 已提交
219
    int offsetC = (index / width / height) % channels;
220 221 222 223 224 225

    int frameNum = index / width / height / channels;
    int phstart = (offsetH < sizeY) ? 0 : (offsetH - sizeY) / strideH + 1;
    int pwstart = (offsetW < sizeX) ? 0 : (offsetW - sizeX) / strideW + 1;
    int phend = offsetH >= 0 ? min(offsetH / strideH + 1, pooledH) : 0;
    int pwend = offsetW >= 0 ? min(offsetW / strideW + 1, pooledW) : 0;
Z
zhangjinchao01 已提交
226 227
    real gradient = 0;
    real input = inputData[index];
Q
qijun 已提交
228 229
    outData += (frameNum * outStride + offsetC * pooledH * pooledW);
    outGrad += (frameNum * outStride + offsetC * pooledH * pooledW);
Z
zhangjinchao01 已提交
230 231 232 233 234 235 236 237 238 239 240 241
    for (int ph = phstart; ph < phend; ++ph) {
      for (int pw = pwstart; pw < pwend; ++pw) {
        if (input == outData[ph * pooledW + pw]) {
          gradient += outGrad[ph * pooledW + pw];
        }
      }
    }
    targetGrad[index] =
      scaleB * targetGrad[index] + scaleA * gradient;
  }
}

242
void hl_maxpool_backward(const int frameCnt, const real* inputData,
Z
zhangjinchao01 已提交
243
                        const real* outData, const real* outGrad,
244 245 246 247 248 249 250
                        const int channels, const int height,
                        const int width,
                        const int pooledH, const int pooledW,
                        const int sizeX, const int sizeY,
                        const int strideH, const int strideW,
                        const int paddingH, const int paddingW,
                        real scaleA, real scaleB,
Q
qijun 已提交
251
                        real* targetGrad, const int outStride) {
252 253 254

  int num_kernels = height * width * channels * frameCnt;
  int blocks = (num_kernels + 1024 - 1) / 1024;
Z
zhangjinchao01 已提交
255

256
  KeMaxPoolBackward<<< blocks, 1024, 0, STREAM_DEFAULT >>>
Z
zhangjinchao01 已提交
257
           (num_kernels, inputData, outData, outGrad, channels,
258 259 260 261
           height, width, pooledH, pooledW, sizeX, sizeY,
           strideH, strideW,
           paddingH, paddingW,
           scaleA, scaleB,
Q
qijun 已提交
262
           targetGrad, outStride);
Z
zhangjinchao01 已提交
263 264 265
  CHECK_SYNC("hl_maxpool_backward");
}

266 267 268 269 270 271 272
__global__ void KeAvgPoolForward(const int nthreads, const real* inputData,
                                 const int channels,
                                 const int height, const int width,
                                 const int pooledH, const int pooledW,
                                 const int sizeX, const int sizeY,
                                 const int strideH, const int strideW,
                                 const int padH, const int padW,
Q
qijun 已提交
273
                                 real* tgtData, const int tgtStride) {
274
  int index = blockIdx.x * blockDim.x + threadIdx.x;
Z
zhangjinchao01 已提交
275 276 277 278
  if (index < nthreads) {
    int pw = index % pooledW;
    int ph = (index / pooledW) % pooledH;
    int c = (index / pooledW / pooledH) % channels;
279 280 281 282 283 284 285 286 287 288 289 290
    int frameNum = index / pooledW / pooledH / channels;

    int hstart = ph * strideH - padH;
    int wstart = pw * strideW - padW;
    int hend = min(hstart + sizeY, height + padH);
    int wend = min(wstart + sizeX, width + padW);
    int pool_size = (hend - hstart) * (wend - wstart);
    hstart = max(hstart, 0);
    wstart = max(wstart, 0);
    hend = min(hend, height);
    wend = min(wend, width);

Z
zhangjinchao01 已提交
291 292 293 294 295 296 297
    real aveval = 0;
    inputData += (frameNum * channels + c) * height * width;
    for (int h = hstart; h < hend; ++h) {
      for (int w = wstart; w < wend; ++w) {
        aveval += inputData[h * width + w];
      }
    }
Q
qijun 已提交
298 299 300
    int tgtIndex = index % (pooledW * pooledH * channels) +
        frameNum * tgtStride;
    tgtData[tgtIndex] = aveval / pool_size;
Z
zhangjinchao01 已提交
301 302 303
  }
}

304 305 306 307 308 309
void hl_avgpool_forward(const int frameCnt, const real* inputData,
                        const int channels,
                        const int height, const int width,
                        const int pooledH, const int pooledW,
                        const int sizeX, const int sizeY,
                        const int strideH, const int strideW,
Q
qijun 已提交
310 311
                        const int paddingH, const int paddingW, 
                        real* tgtData, const int tgtStride) {
312 313 314
  int num_kernels = pooledH * pooledW * channels * frameCnt;
  int blocks = (num_kernels + 1024 - 1) / 1024;
  KeAvgPoolForward<<< blocks, 1024, 0, STREAM_DEFAULT >>>
Z
zhangjinchao01 已提交
315 316
           (num_kernels, inputData, channels,
           height, width, pooledH, pooledW,
317
           sizeX, sizeY, strideH, strideW,
Q
qijun 已提交
318
           paddingH, paddingW, tgtData, tgtStride);
Z
zhangjinchao01 已提交
319 320 321
  CHECK_SYNC("hl_avgpool_forward failed");
}

322 323 324 325 326 327 328 329
__global__ void KeAvgPoolBackward(const int nthreads, const real* outGrad,
                                  const int channels, const int height,
                                  const int width,
                                  const int pooledH, const int pooledW,
                                  const int sizeX, const int sizeY,
                                  const int strideH, const int strideW,
                                  const int padH, const int padW,
                                  real scaleA, real scaleB,
Q
qijun 已提交
330
                                  real* tgtGrad, const int outStride) {
331
  int index = blockIdx.x * blockDim.x + threadIdx.x;
Z
zhangjinchao01 已提交
332
  if (index < nthreads) {
333 334
    int offsetW = index % width + padW;
    int offsetH = (index / width) % height + padH;
Z
zhangjinchao01 已提交
335
    int offsetC = (index / width / height) % channels;
336 337 338 339 340 341
    int frameNum = index / width / height / channels;

    int phstart = (offsetH < sizeY) ? 0 : (offsetH - sizeY) / strideH + 1;
    int pwstart = (offsetW < sizeX) ? 0 : (offsetW - sizeX) / strideW + 1;
    int phend = offsetH >= 0 ? min(offsetH / strideH + 1, pooledH) : 0;
    int pwend = offsetW >= 0 ? min(offsetW / strideW + 1, pooledW) : 0;
Z
zhangjinchao01 已提交
342
    real gradient = 0;
Q
qijun 已提交
343 344
    outGrad += (frameNum * outStride + offsetC * pooledH * pooledW);

Z
zhangjinchao01 已提交
345 346 347 348

    for (int ph = phstart; ph < phend; ++ph) {
      for (int pw = pwstart; pw < pwend; ++pw) {
        // figure out the pooling size
349 350 351 352 353
        int hstart = ph * strideH - padH;
        int wstart = pw * strideW - padW;
        int hend = min(hstart + sizeY, height + padH);
        int wend = min(wstart + sizeX, width + padW);
        int poolsize = (hend - hstart) * (wend - wstart);
Z
zhangjinchao01 已提交
354 355 356 357 358 359 360
        gradient += outGrad[ph * pooledW + pw]/poolsize;
      }
    }
    tgtGrad[index] = scaleB * tgtGrad[index] + scaleA * gradient;
  }
}

361 362 363 364 365 366 367 368
void hl_avgpool_backward(const int frameCnt, const real* outGrad,
                         const int channels,
                         const int height, const int width,
                         const int pooledH, const int pooledW,
                         const int sizeX, const int sizeY,
                         const int strideH, const int strideW,
                         const int paddingH, const int paddingW,
                         real scaleA, real scaleB,
Q
qijun 已提交
369
                         real* backGrad, const int outStride) {
370 371
  int num_kernels = height * width * channels * frameCnt;
  int blocks = (num_kernels + 1024 - 1) / 1024;
Z
zhangjinchao01 已提交
372

373
  KeAvgPoolBackward <<< blocks, 1024, 0, STREAM_DEFAULT >>>
Z
zhangjinchao01 已提交
374
           (num_kernels, outGrad, channels, height, width,
375 376 377 378
           pooledH, pooledW, sizeX, sizeY,
           strideH, strideW,
           paddingH, paddingW,
           scaleA, scaleB,
Q
qijun 已提交
379
           backGrad, outStride);
Z
zhangjinchao01 已提交
380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539
  CHECK_SYNC("hl_avgpool_backward failed");
}

__global__ void KeCMRNormFillScale(size_t nthreads, const real* in,
                                   real* scale, size_t channels,
                                   size_t height, size_t width, size_t size,
                                   real alpha) {
  size_t index = threadIdx.x + blockIdx.x * blockDim.x;
  if (index < nthreads) {
    // find out the local offset
    size_t w = index % width;
    size_t h = (index / width) % height;
    size_t n = index / width / height;
    size_t offset = (n * channels * height + h) * width + w;
    size_t step = height * width;
    in += offset;
    scale += offset;
    size_t head = 0;
    size_t pre_pad = (size - 1) / 2;
    size_t post_pad = size - pre_pad - 1;
    real accum_scale = 0;
    // fill the scale at [n, :, h, w]
    // accumulate values
    while (head < post_pad) {
      accum_scale += in[head * step] * in[head * step];
      ++head;
    }
    // until we reach size, nothing needs to be subtracted
    while (head < size) {
      accum_scale += in[head * step] * in[head * step];
      scale[(head - post_pad) * step] = 1. + accum_scale * alpha;
      ++head;
    }
    // both add and subtract
    while (head < channels) {
      accum_scale += in[head * step] * in[head * step];
      accum_scale -= in[(head - size) * step] * in[(head - size) * step];
      scale[(head - post_pad) * step] = 1. + accum_scale * alpha;
      ++head;
    }
    // subtract only
    while (head < channels + post_pad) {
      accum_scale -= in[(head - size) * step] * in[(head - size) * step];
      scale[(head - post_pad) * step] = 1. + accum_scale * alpha;
      ++head;
    }
  }
}

 __global__ void KeCMRNormOutput(size_t nthreads, const real* in,
                                 const real* scale, real negative_beta,
                                 real* out) {
  size_t index = threadIdx.x + blockIdx.x * blockDim.x;
  if (index < nthreads) {
    out[index] = in[index] * pow(scale[index], negative_beta);
  }
}

void hl_CMRNorm_forward(size_t frameCnt, const real* in, real* scale,
                        real* out, size_t channels,
                        size_t height, size_t width, size_t sizeX,
                        real alpha, real beta) {
  size_t threadsNum = frameCnt * height * width;
  size_t blocksX = (threadsNum + 1024 - 1) / 1024;
  size_t blocksY = 1;
  dim3 threads(1024, 1);
  dim3 grid(blocksX, blocksY);

  KeCMRNormFillScale<<<grid, threads, 0, STREAM_DEFAULT>>>
      (threadsNum, in, scale, channels, height, width, sizeX, alpha);

  threadsNum = frameCnt * height * width *channels;
  blocksX = (threadsNum + 1024 -1) / 1024;
  dim3 threads2(1024, 1);
  dim3 grid2(blocksX, blocksY);
  KeCMRNormOutput<<<grid2, threads2, 0, STREAM_DEFAULT>>>
           (threadsNum, in, scale, beta, out);
  CHECK_SYNC("hl_CMRNorm_forward");
}

__global__ void KeCMRNormDiff(size_t nthreads, const real* bottom_data,
                              const real* top_data, const real* scale,
                              const real* top_diff, size_t channels,
                              size_t height, size_t width, size_t size,
                              real negative_beta, real cache_ratio,
                              real* bottom_diff ) {
  int index = threadIdx.x + blockIdx.x * blockDim.x;
  if (index < nthreads) {
    // find out the local offset
    size_t w = index % width;
    size_t h = (index / width) % height;
    size_t n = index / width / height;
    size_t offset = (n * channels * height + h) * width + w;
    size_t step = height * width;
    bottom_data += offset;
    top_data += offset;
    scale += offset;
    top_diff += offset;
    bottom_diff += offset;
    int head = 0;
    int pre_pad = size - (size + 1) / 2;
    int post_pad = size - pre_pad - 1;
    real accum_ratio = 0;
    // accumulate values
    while (head < post_pad) {
      accum_ratio += top_diff[head * step] *
        top_data[head * step] / scale[head * step];
      ++head;
    }
    // until we reach size, nothing needs to be subtracted
    while (head < size) {
      accum_ratio += top_diff[head * step] *
        top_data[head * step] / scale[head * step];
      bottom_diff[(head - post_pad) * step] +=
        top_diff[(head - post_pad) * step] *
        pow(scale[(head - post_pad) * step], negative_beta) - cache_ratio *
        bottom_data[(head - post_pad) * step] * accum_ratio;
      ++head;
    }
    // both add and subtract
    while (head < channels) {
      accum_ratio += top_diff[head * step] * top_data[head * step] /
          scale[head * step];
      accum_ratio -= top_diff[(head - size) * step] *
          top_data[(head - size) * step] / scale[(head - size) * step];
      bottom_diff[(head - post_pad) * step] +=
        top_diff[(head - post_pad) * step] *
        pow(scale[(head - post_pad) * step], negative_beta) - cache_ratio *
        bottom_data[(head - post_pad) * step] * accum_ratio;
      ++head;
    }
    // subtract only
    while (head < channels + post_pad) {
      accum_ratio -= top_diff[(head - size) * step] *
          top_data[(head - size) * step] / scale[(head - size) * step];
      bottom_diff[(head - post_pad) * step] +=
        top_diff[(head - post_pad) * step] *
        pow(scale[(head - post_pad) * step], negative_beta) - cache_ratio *
        bottom_data[(head - post_pad) * step] * accum_ratio;
      ++head;
    }
  }
}

void hl_CMRNorm_backward(size_t frameCnt, const real* inV,
                         const real* scale,
                         const real* outV, const real* outDiff,
                         real *inDiff, size_t channels,
                         size_t height, size_t width, size_t sizeX,
                         real alpha, real beta) {
  size_t threadsNum = frameCnt * height * width;
  size_t blocksX = (threadsNum + 1024 -1) / 1024;
  size_t blocksY = 1;
  dim3 threads(1024, 1);
  dim3 grid(blocksX, blocksY);
  KeCMRNormDiff <<<grid, threads, 0, STREAM_DEFAULT>>>
           (threadsNum, inV, outV, scale, outDiff, channels,
           height, width, sizeX, alpha, beta, inDiff);
  CHECK_SYNC("hl_CMRNorm_backward");
}
540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598

__global__ void maxoutFpCompute(size_t nthreads, const real * inData,
                                real * outData, int* idData, 
                                size_t size, size_t featLen, size_t groups) {
  int index = blockIdx.x * blockDim.x + threadIdx.x;
  if(index < nthreads) {
    size_t batch_idx = index / size;
    size_t i = index % size;
    size_t channel_idx = i / featLen;
    size_t feat_idx = i % featLen;
    size_t data_idx = (batch_idx * size + channel_idx * featLen) * groups + feat_idx;
    real max = inData[data_idx];
    int maxId = 0;
    for (size_t g = 1; g < groups; ++g) {
      real tmp = inData[data_idx + g * featLen];
      if (tmp > max) {
        max = tmp;
        maxId = g;
      }
    }
    outData[index] = max;
    idData[index] = maxId;
  }
}

void hl_maxout_forward(const real* inData, real* outData,
                       int* idData, size_t batchSize, size_t size,
                       size_t featLen, size_t groups) {
  int num_kernels = size * batchSize;
  int blocks = (num_kernels + 1024 - 1) / 1024;
  maxoutFpCompute<<< blocks, 1024, 0, STREAM_DEFAULT>>>(
    num_kernels, inData, outData, idData, size, featLen, groups);
  CHECK_SYNC("hl_maxout_forward failed");
}

__global__ void maxoutBpCompute(size_t nthreads, real* inGrad,
                                const real* outGrad, const int* idData,
                                size_t size, size_t featLen, size_t groups) {
  int index = blockIdx.x * blockDim.x + threadIdx.x;
  if(index < nthreads) {
    size_t batch_idx = index / size;
    size_t i = index % size;
    size_t channel_idx = i / featLen;
    size_t feat_idx = i % featLen;
    size_t newIndex = batch_idx * size;
    size_t gradIdx = (channel_idx * groups + (idData + newIndex)[i]) * featLen + feat_idx;
    (inGrad + newIndex * groups)[gradIdx] += (outGrad + newIndex)[i];
  }
}

void hl_maxout_backward(real* inGrad, const real* outGrad,
                        const int* idData, size_t batchSize, size_t size,
                        size_t featLen, size_t groups) {
  int num_kernels = size * batchSize;
  int blocks = (num_kernels + 1024 - 1) / 1024;
  maxoutBpCompute<<< blocks, 1024, 0, STREAM_DEFAULT >>>(
    num_kernels, inGrad, outGrad, idData, size, featLen, groups);
  CHECK_SYNC("hl_maxout_backward failed");
}