use_eigen_cn.md 5.0 KB
Newer Older
Q
qijun 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140
## 在Paddle中如何使用Eigen

神经网络本质上是一个计算图,计算需要的数据存放在`Tensor`中,而计算过程是由`Operartor`来描述的。在执行时,`Operator`调用对应`OpKernel`中的`Compute`接口,实现对`Tensor`的操作。


### Eigen Tensor模块

Eigen Tensor模块对element-wise计算提供了强大的支持,并且书写一份代码,可以同时在CPU、GPU执行。但Eigen Tensor是一个正在开发中的模块,因此可能测试不够完备,文档较少。

关于Eigen Tensor模块的详细介绍请参考[文档](https://github.com/RLovelett/eigen/blob/master/unsupported/Eigen/CXX11/src/Tensor/README.md)


### paddle::framework::Tensor

Paddle Tensor定义在framework目录下,其主要接口如下:

```
class Tensor {
 public:
  /*! Return a pointer to mutable memory block. */
  template <typename T>
  inline T* data();
  
  /**
   * @brief   Return a pointer to mutable memory block.
   * @note    If not exist, then allocation.
   */
  template <typename T>
  inline T* mutable_data(platform::Place place);
  
  /**
   * @brief     Return a pointer to mutable memory block.
   *
   * @param[in] dims    The dimensions of the memory block.
   * @param[in] place   The place of the memory block.
   *
   * @note      If not exist, then allocation.
   */
  template <typename T>
  inline T* mutable_data(DDim dims, platform::Place place);
  
  /*! Resize the dimensions of the memory block. */
  inline Tensor& Resize(const DDim& dims);
  
  /*! Return the dimensions of the memory block. */
  inline const DDim& dims() const;

 private:  
  /*! holds the memory block if allocated. */
  std::shared_ptr<Placeholder> holder_;
  
  /*! points to dimensions of memory block. */
  DDim dim_;
};
```

`Placeholder`的作用的延迟分配内存,即我们可以先定义一个Tensor,然后使用Resize接口设置Tensor的大小,最后再调用mutable_data接口分配实际的内存。

```
paddle::framework::Tensor t;
paddle::platform::CPUPlace place;
// set size first
t.Resize({2, 3});
// allocate memory on CPU later
t.mutable_data(place);
```

下面以AddOp为例说明Tensor的使用过程:

- InferShape

在运行神经网络计算图时,我们先调用每个`Operator``InferShape`接口,根据输入Tensor的大小来设置输出Tensor的大小,`Resize`接口会被调用。

```
void InferShape(const framework::InferShapeContext &ctx) const override {
  PADDLE_ENFORCE_EQ(ctx.Input<Tensor>("X")->dims(),
                    ctx.Input<Tensor>("Y")->dims(),
                    "Two input of Add Op's dimension must be same.");
  ctx.Output<Tensor>("Out")->Resize(ctx.Input<Tensor>("X")->dims());
}
```


- Run

`Operator``Run`接口最终会调用对应`OpKernel``Compute`接口,在这时真正的分配内存,`mutable_data`接口会被调用。

```
void Compute(const framework::ExecutionContext& context) const override {
  auto* input0 = context.Input<Tensor>("X");
  auto* input1 = context.Input<Tensor>("Y");
  auto* output = context.Output<Tensor>("Out");

  output->mutable_data<T>(context.GetPlace());

  auto X = EigenVector<T>::Flatten(*input0);
  auto Y = EigenVector<T>::Flatten(*input1);
  auto Z = EigenVector<T>::Flatten(*output);

  auto place = context.GetEigenDevice<Place>();

  Z.device(place) = X + Y;
}
```


### paddle::framework::Tensor到EigenTensor的转换

如上一小节所示,在具体的计算中,我们需要先把输入Tensor和输出Tensor转换为Eigen支持的格式。我们在[eigen.h](https://github.com/PaddlePaddle/Paddle/blob/develop/paddle/framework/eigen.h)中提供了一些全局函数用来实现paddle::framework::Tensor到EigenTensor/EigenMatrix/EigenVector/EigenScalar的转换。

以EigenTensor为例,做一个介绍

```
Tensor t;
float* p = t.mutable_data<float>(make_ddim({1, 2, 3}), platform::CPUPlace());
for (int i = 0; i < 1 * 2 * 3; i++) {
  p[i] = static_cast<float>(i);
}

EigenTensor<float, 3>::Type et = EigenTensor<float, 3>::From(t);
```

From是EigenTensor模板struct提供的一个接口,可以实现从paddle::framework::Tensor到对EigenTensor的转换。由于Tensor的rank是模板参数,因此在转换时需要显示的指定。

需要额外注意的是,EigenVector<T>::From方法是把paddle中的一维Tensor转为Eigen的一维Tensor,在这里用EigenVector来表示;而EigenVector<T>::Flatten方法是把paddle中的一个Tensor进行reshape操作,压扁成为Eigen的一维Tensor,类型仍然为EigenVector。

更多的转换方法请参考eigen_test.cc中的[单元测试](https://github.com/PaddlePaddle/Paddle/blob/develop/paddle/framework/eigen_test.cc)



### 实现计算

当需要完成计算时,我们需要等式左边的EigenTensor调用device接口:

```
auto place = context.GetEigenDevice<Place>();
Z.device(place) = X + Y;
```

由于Eigen Tensor模块的文档较少,我们可以参考TensorFlow的[kernels](https://github.com/tensorflow/tensorflow/tree/master/tensorflow/core/kernels)模块下的相关`OpKernel`的计算代码。