category.py 23.9 KB
Newer Older
K
Kaipeng Deng 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved. 
#   
# Licensed under the Apache License, Version 2.0 (the "License");   
# you may not use this file except in compliance with the License.  
# You may obtain a copy of the License at   
#   
#     http://www.apache.org/licenses/LICENSE-2.0    
#   
# Unless required by applicable law or agreed to in writing, software   
# distributed under the License is distributed on an "AS IS" BASIS, 
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.  
# See the License for the specific language governing permissions and   
# limitations under the License.

from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

import os

G
Guanghua Yu 已提交
21
from ppdet.data.source.voc import pascalvoc_label
22
from ppdet.data.source.widerface import widerface_label
K
Kaipeng Deng 已提交
23 24 25 26 27 28
from ppdet.utils.logger import setup_logger
logger = setup_logger(__name__)

__all__ = ['get_categories']


Z
zhiboniu 已提交
29
def get_categories(metric_type, anno_file=None, arch=None):
K
Kaipeng Deng 已提交
30 31 32 33 34
    """
    Get class id to category id map and category id
    to category name map from annotation file.

    Args:
F
Feng Ni 已提交
35 36
        metric_type (str): metric type, currently support 'coco', 'voc', 'oid'
            and 'widerface'.
K
Kaipeng Deng 已提交
37 38
        anno_file (str): annotation file path
    """
39 40 41
    if arch == 'keypoint_arch':
        return (None, {'id': 'keypoint'})

F
Feng Ni 已提交
42
    if anno_file == None or (not os.path.isfile(anno_file)):
43 44
        logger.warning(
            "anno_file '{}' is None or not set or not exist, "
F
Feng Ni 已提交
45
            "please recheck TrainDataset/EvalDataset/TestDataset.anno_path, "
46 47
            "otherwise the default categories will be used by metric_type.".
            format(anno_file))
F
Feng Ni 已提交
48

49 50
    if metric_type.lower() == 'coco' or metric_type.lower(
    ) == 'rbox' or metric_type.lower() == 'snipercoco':
K
Kaipeng Deng 已提交
51
        if anno_file and os.path.isfile(anno_file):
52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73
            if anno_file.endswith('json'):
                # lazy import pycocotools here
                from pycocotools.coco import COCO
                coco = COCO(anno_file)
                cats = coco.loadCats(coco.getCatIds())

                clsid2catid = {i: cat['id'] for i, cat in enumerate(cats)}
                catid2name = {cat['id']: cat['name'] for cat in cats}

            elif anno_file.endswith('txt'):
                cats = []
                with open(anno_file) as f:
                    for line in f.readlines():
                        cats.append(line.strip())
                if cats[0] == 'background': cats = cats[1:]

                clsid2catid = {i: i for i in range(len(cats))}
                catid2name = {i: name for i, name in enumerate(cats)}

            else:
                raise ValueError("anno_file {} should be json or txt.".format(
                    anno_file))
K
Kaipeng Deng 已提交
74 75 76 77
            return clsid2catid, catid2name

        # anno file not exist, load default categories of COCO17
        else:
78
            if metric_type.lower() == 'rbox':
79 80 81
                logger.warning(
                    "metric_type: {}, load default categories of DOTA.".format(
                        metric_type))
82
                return _dota_category()
83 84
            logger.warning("metric_type: {}, load default categories of COCO.".
                           format(metric_type))
85
            return _coco17_category()
K
Kaipeng Deng 已提交
86 87 88 89 90 91 92 93

    elif metric_type.lower() == 'voc':
        if anno_file and os.path.isfile(anno_file):
            cats = []
            with open(anno_file) as f:
                for line in f.readlines():
                    cats.append(line.strip())

94
            if cats[0] == 'background':
K
Kaipeng Deng 已提交
95 96 97 98 99 100 101 102 103 104
                cats = cats[1:]

            clsid2catid = {i: i for i in range(len(cats))}
            catid2name = {i: name for i, name in enumerate(cats)}

            return clsid2catid, catid2name

        # anno file not exist, load default categories of
        # VOC all 20 categories
        else:
105 106
            logger.warning("metric_type: {}, load default categories of VOC.".
                           format(metric_type))
107
            return _vocall_category()
K
Kaipeng Deng 已提交
108 109 110

    elif metric_type.lower() == 'oid':
        if anno_file and os.path.isfile(anno_file):
111
            logger.warning("only default categories support for OID19")
112
        return _oid19_category()
K
Kaipeng Deng 已提交
113

114 115 116
    elif metric_type.lower() == 'widerface':
        return _widerface_category()

Z
zhiboniu 已提交
117 118
    elif metric_type.lower() == 'keypointtopdowncocoeval' or metric_type.lower(
    ) == 'keypointtopdownmpiieval':
Z
zhiboniu 已提交
119 120
        return (None, {'id': 'keypoint'})

Z
zhiboniu 已提交
121 122 123
    elif metric_type.lower() == 'pose3deval':
        return (None, {'id': 'pose3d'})

G
George Ni 已提交
124
    elif metric_type.lower() in ['mot', 'motdet', 'reid']:
125 126 127 128 129 130 131 132 133 134 135 136
        if anno_file and os.path.isfile(anno_file):
            cats = []
            with open(anno_file) as f:
                for line in f.readlines():
                    cats.append(line.strip())
            if cats[0] == 'background':
                cats = cats[1:]
            clsid2catid = {i: i for i in range(len(cats))}
            catid2name = {i: name for i, name in enumerate(cats)}
            return clsid2catid, catid2name
        # anno file not exist, load default category 'pedestrian'.
        else:
137 138 139
            logger.warning(
                "metric_type: {}, load default categories of pedestrian MOT.".
                format(metric_type))
140
            return _mot_category(category='pedestrian')
G
George Ni 已提交
141

142
    elif metric_type.lower() in ['kitti', 'bdd100kmot']:
143
        return _mot_category(category='vehicle')
F
Feng Ni 已提交
144

145
    elif metric_type.lower() in ['mcmot']:
146 147 148 149 150 151 152 153 154 155 156 157
        if anno_file and os.path.isfile(anno_file):
            cats = []
            with open(anno_file) as f:
                for line in f.readlines():
                    cats.append(line.strip())
            if cats[0] == 'background':
                cats = cats[1:]
            clsid2catid = {i: i for i in range(len(cats))}
            catid2name = {i: name for i, name in enumerate(cats)}
            return clsid2catid, catid2name
        # anno file not exist, load default categories of visdrone all 10 categories
        else:
158 159 160
            logger.warning(
                "metric_type: {}, load default categories of VisDrone.".format(
                    metric_type))
161
            return _visdrone_category()
162

K
Kaipeng Deng 已提交
163 164 165 166
    else:
        raise ValueError("unknown metric type {}".format(metric_type))


167
def _mot_category(category='pedestrian'):
G
George Ni 已提交
168 169 170 171
    """
    Get class id to category id map and category id
    to category name map of mot dataset
    """
F
Feng Ni 已提交
172
    label_map = {category: 0}
G
George Ni 已提交
173 174 175 176 177 178 179 180 181
    label_map = sorted(label_map.items(), key=lambda x: x[1])
    cats = [l[0] for l in label_map]

    clsid2catid = {i: i for i in range(len(cats))}
    catid2name = {i: name for i, name in enumerate(cats)}

    return clsid2catid, catid2name


182
def _coco17_category():
K
Kaipeng Deng 已提交
183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354
    """
    Get class id to category id map and category id
    to category name map of COCO2017 dataset

    """
    clsid2catid = {
        1: 1,
        2: 2,
        3: 3,
        4: 4,
        5: 5,
        6: 6,
        7: 7,
        8: 8,
        9: 9,
        10: 10,
        11: 11,
        12: 13,
        13: 14,
        14: 15,
        15: 16,
        16: 17,
        17: 18,
        18: 19,
        19: 20,
        20: 21,
        21: 22,
        22: 23,
        23: 24,
        24: 25,
        25: 27,
        26: 28,
        27: 31,
        28: 32,
        29: 33,
        30: 34,
        31: 35,
        32: 36,
        33: 37,
        34: 38,
        35: 39,
        36: 40,
        37: 41,
        38: 42,
        39: 43,
        40: 44,
        41: 46,
        42: 47,
        43: 48,
        44: 49,
        45: 50,
        46: 51,
        47: 52,
        48: 53,
        49: 54,
        50: 55,
        51: 56,
        52: 57,
        53: 58,
        54: 59,
        55: 60,
        56: 61,
        57: 62,
        58: 63,
        59: 64,
        60: 65,
        61: 67,
        62: 70,
        63: 72,
        64: 73,
        65: 74,
        66: 75,
        67: 76,
        68: 77,
        69: 78,
        70: 79,
        71: 80,
        72: 81,
        73: 82,
        74: 84,
        75: 85,
        76: 86,
        77: 87,
        78: 88,
        79: 89,
        80: 90
    }

    catid2name = {
        0: 'background',
        1: 'person',
        2: 'bicycle',
        3: 'car',
        4: 'motorcycle',
        5: 'airplane',
        6: 'bus',
        7: 'train',
        8: 'truck',
        9: 'boat',
        10: 'traffic light',
        11: 'fire hydrant',
        13: 'stop sign',
        14: 'parking meter',
        15: 'bench',
        16: 'bird',
        17: 'cat',
        18: 'dog',
        19: 'horse',
        20: 'sheep',
        21: 'cow',
        22: 'elephant',
        23: 'bear',
        24: 'zebra',
        25: 'giraffe',
        27: 'backpack',
        28: 'umbrella',
        31: 'handbag',
        32: 'tie',
        33: 'suitcase',
        34: 'frisbee',
        35: 'skis',
        36: 'snowboard',
        37: 'sports ball',
        38: 'kite',
        39: 'baseball bat',
        40: 'baseball glove',
        41: 'skateboard',
        42: 'surfboard',
        43: 'tennis racket',
        44: 'bottle',
        46: 'wine glass',
        47: 'cup',
        48: 'fork',
        49: 'knife',
        50: 'spoon',
        51: 'bowl',
        52: 'banana',
        53: 'apple',
        54: 'sandwich',
        55: 'orange',
        56: 'broccoli',
        57: 'carrot',
        58: 'hot dog',
        59: 'pizza',
        60: 'donut',
        61: 'cake',
        62: 'chair',
        63: 'couch',
        64: 'potted plant',
        65: 'bed',
        67: 'dining table',
        70: 'toilet',
        72: 'tv',
        73: 'laptop',
        74: 'mouse',
        75: 'remote',
        76: 'keyboard',
        77: 'cell phone',
        78: 'microwave',
        79: 'oven',
        80: 'toaster',
        81: 'sink',
        82: 'refrigerator',
        84: 'book',
        85: 'clock',
        86: 'vase',
        87: 'scissors',
        88: 'teddy bear',
        89: 'hair drier',
        90: 'toothbrush'
    }

355 356
    clsid2catid = {k - 1: v for k, v in clsid2catid.items()}
    catid2name.pop(0)
K
Kaipeng Deng 已提交
357 358 359 360

    return clsid2catid, catid2name


361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388
def _dota_category():
    """
    Get class id to category id map and category id
    to category name map of dota dataset
    """
    catid2name = {
        0: 'background',
        1: 'plane',
        2: 'baseball-diamond',
        3: 'bridge',
        4: 'ground-track-field',
        5: 'small-vehicle',
        6: 'large-vehicle',
        7: 'ship',
        8: 'tennis-court',
        9: 'basketball-court',
        10: 'storage-tank',
        11: 'soccer-ball-field',
        12: 'roundabout',
        13: 'harbor',
        14: 'swimming-pool',
        15: 'helicopter'
    }
    catid2name.pop(0)
    clsid2catid = {i: i + 1 for i in range(len(catid2name))}
    return clsid2catid, catid2name


389
def _vocall_category():
K
Kaipeng Deng 已提交
390 391 392 393 394
    """
    Get class id to category id map and category id
    to category name map of mixup voc dataset

    """
395
    label_map = pascalvoc_label()
K
Kaipeng Deng 已提交
396 397 398 399 400 401 402 403 404
    label_map = sorted(label_map.items(), key=lambda x: x[1])
    cats = [l[0] for l in label_map]

    clsid2catid = {i: i for i in range(len(cats))}
    catid2name = {i: name for i, name in enumerate(cats)}

    return clsid2catid, catid2name


405 406 407 408 409 410 411 412 413 414
def _widerface_category():
    label_map = widerface_label()
    label_map = sorted(label_map.items(), key=lambda x: x[1])
    cats = [l[0] for l in label_map]
    clsid2catid = {i: i for i in range(len(cats))}
    catid2name = {i: name for i, name in enumerate(cats)}

    return clsid2catid, catid2name


415 416
def _oid19_category():
    clsid2catid = {k: k + 1 for k in range(500)}
K
Kaipeng Deng 已提交
417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922

    catid2name = {
        0: "background",
        1: "Infant bed",
        2: "Rose",
        3: "Flag",
        4: "Flashlight",
        5: "Sea turtle",
        6: "Camera",
        7: "Animal",
        8: "Glove",
        9: "Crocodile",
        10: "Cattle",
        11: "House",
        12: "Guacamole",
        13: "Penguin",
        14: "Vehicle registration plate",
        15: "Bench",
        16: "Ladybug",
        17: "Human nose",
        18: "Watermelon",
        19: "Flute",
        20: "Butterfly",
        21: "Washing machine",
        22: "Raccoon",
        23: "Segway",
        24: "Taco",
        25: "Jellyfish",
        26: "Cake",
        27: "Pen",
        28: "Cannon",
        29: "Bread",
        30: "Tree",
        31: "Shellfish",
        32: "Bed",
        33: "Hamster",
        34: "Hat",
        35: "Toaster",
        36: "Sombrero",
        37: "Tiara",
        38: "Bowl",
        39: "Dragonfly",
        40: "Moths and butterflies",
        41: "Antelope",
        42: "Vegetable",
        43: "Torch",
        44: "Building",
        45: "Power plugs and sockets",
        46: "Blender",
        47: "Billiard table",
        48: "Cutting board",
        49: "Bronze sculpture",
        50: "Turtle",
        51: "Broccoli",
        52: "Tiger",
        53: "Mirror",
        54: "Bear",
        55: "Zucchini",
        56: "Dress",
        57: "Volleyball",
        58: "Guitar",
        59: "Reptile",
        60: "Golf cart",
        61: "Tart",
        62: "Fedora",
        63: "Carnivore",
        64: "Car",
        65: "Lighthouse",
        66: "Coffeemaker",
        67: "Food processor",
        68: "Truck",
        69: "Bookcase",
        70: "Surfboard",
        71: "Footwear",
        72: "Bench",
        73: "Necklace",
        74: "Flower",
        75: "Radish",
        76: "Marine mammal",
        77: "Frying pan",
        78: "Tap",
        79: "Peach",
        80: "Knife",
        81: "Handbag",
        82: "Laptop",
        83: "Tent",
        84: "Ambulance",
        85: "Christmas tree",
        86: "Eagle",
        87: "Limousine",
        88: "Kitchen & dining room table",
        89: "Polar bear",
        90: "Tower",
        91: "Football",
        92: "Willow",
        93: "Human head",
        94: "Stop sign",
        95: "Banana",
        96: "Mixer",
        97: "Binoculars",
        98: "Dessert",
        99: "Bee",
        100: "Chair",
        101: "Wood-burning stove",
        102: "Flowerpot",
        103: "Beaker",
        104: "Oyster",
        105: "Woodpecker",
        106: "Harp",
        107: "Bathtub",
        108: "Wall clock",
        109: "Sports uniform",
        110: "Rhinoceros",
        111: "Beehive",
        112: "Cupboard",
        113: "Chicken",
        114: "Man",
        115: "Blue jay",
        116: "Cucumber",
        117: "Balloon",
        118: "Kite",
        119: "Fireplace",
        120: "Lantern",
        121: "Missile",
        122: "Book",
        123: "Spoon",
        124: "Grapefruit",
        125: "Squirrel",
        126: "Orange",
        127: "Coat",
        128: "Punching bag",
        129: "Zebra",
        130: "Billboard",
        131: "Bicycle",
        132: "Door handle",
        133: "Mechanical fan",
        134: "Ring binder",
        135: "Table",
        136: "Parrot",
        137: "Sock",
        138: "Vase",
        139: "Weapon",
        140: "Shotgun",
        141: "Glasses",
        142: "Seahorse",
        143: "Belt",
        144: "Watercraft",
        145: "Window",
        146: "Giraffe",
        147: "Lion",
        148: "Tire",
        149: "Vehicle",
        150: "Canoe",
        151: "Tie",
        152: "Shelf",
        153: "Picture frame",
        154: "Printer",
        155: "Human leg",
        156: "Boat",
        157: "Slow cooker",
        158: "Croissant",
        159: "Candle",
        160: "Pancake",
        161: "Pillow",
        162: "Coin",
        163: "Stretcher",
        164: "Sandal",
        165: "Woman",
        166: "Stairs",
        167: "Harpsichord",
        168: "Stool",
        169: "Bus",
        170: "Suitcase",
        171: "Human mouth",
        172: "Juice",
        173: "Skull",
        174: "Door",
        175: "Violin",
        176: "Chopsticks",
        177: "Digital clock",
        178: "Sunflower",
        179: "Leopard",
        180: "Bell pepper",
        181: "Harbor seal",
        182: "Snake",
        183: "Sewing machine",
        184: "Goose",
        185: "Helicopter",
        186: "Seat belt",
        187: "Coffee cup",
        188: "Microwave oven",
        189: "Hot dog",
        190: "Countertop",
        191: "Serving tray",
        192: "Dog bed",
        193: "Beer",
        194: "Sunglasses",
        195: "Golf ball",
        196: "Waffle",
        197: "Palm tree",
        198: "Trumpet",
        199: "Ruler",
        200: "Helmet",
        201: "Ladder",
        202: "Office building",
        203: "Tablet computer",
        204: "Toilet paper",
        205: "Pomegranate",
        206: "Skirt",
        207: "Gas stove",
        208: "Cookie",
        209: "Cart",
        210: "Raven",
        211: "Egg",
        212: "Burrito",
        213: "Goat",
        214: "Kitchen knife",
        215: "Skateboard",
        216: "Salt and pepper shakers",
        217: "Lynx",
        218: "Boot",
        219: "Platter",
        220: "Ski",
        221: "Swimwear",
        222: "Swimming pool",
        223: "Drinking straw",
        224: "Wrench",
        225: "Drum",
        226: "Ant",
        227: "Human ear",
        228: "Headphones",
        229: "Fountain",
        230: "Bird",
        231: "Jeans",
        232: "Television",
        233: "Crab",
        234: "Microphone",
        235: "Home appliance",
        236: "Snowplow",
        237: "Beetle",
        238: "Artichoke",
        239: "Jet ski",
        240: "Stationary bicycle",
        241: "Human hair",
        242: "Brown bear",
        243: "Starfish",
        244: "Fork",
        245: "Lobster",
        246: "Corded phone",
        247: "Drink",
        248: "Saucer",
        249: "Carrot",
        250: "Insect",
        251: "Clock",
        252: "Castle",
        253: "Tennis racket",
        254: "Ceiling fan",
        255: "Asparagus",
        256: "Jaguar",
        257: "Musical instrument",
        258: "Train",
        259: "Cat",
        260: "Rifle",
        261: "Dumbbell",
        262: "Mobile phone",
        263: "Taxi",
        264: "Shower",
        265: "Pitcher",
        266: "Lemon",
        267: "Invertebrate",
        268: "Turkey",
        269: "High heels",
        270: "Bust",
        271: "Elephant",
        272: "Scarf",
        273: "Barrel",
        274: "Trombone",
        275: "Pumpkin",
        276: "Box",
        277: "Tomato",
        278: "Frog",
        279: "Bidet",
        280: "Human face",
        281: "Houseplant",
        282: "Van",
        283: "Shark",
        284: "Ice cream",
        285: "Swim cap",
        286: "Falcon",
        287: "Ostrich",
        288: "Handgun",
        289: "Whiteboard",
        290: "Lizard",
        291: "Pasta",
        292: "Snowmobile",
        293: "Light bulb",
        294: "Window blind",
        295: "Muffin",
        296: "Pretzel",
        297: "Computer monitor",
        298: "Horn",
        299: "Furniture",
        300: "Sandwich",
        301: "Fox",
        302: "Convenience store",
        303: "Fish",
        304: "Fruit",
        305: "Earrings",
        306: "Curtain",
        307: "Grape",
        308: "Sofa bed",
        309: "Horse",
        310: "Luggage and bags",
        311: "Desk",
        312: "Crutch",
        313: "Bicycle helmet",
        314: "Tick",
        315: "Airplane",
        316: "Canary",
        317: "Spatula",
        318: "Watch",
        319: "Lily",
        320: "Kitchen appliance",
        321: "Filing cabinet",
        322: "Aircraft",
        323: "Cake stand",
        324: "Candy",
        325: "Sink",
        326: "Mouse",
        327: "Wine",
        328: "Wheelchair",
        329: "Goldfish",
        330: "Refrigerator",
        331: "French fries",
        332: "Drawer",
        333: "Treadmill",
        334: "Picnic basket",
        335: "Dice",
        336: "Cabbage",
        337: "Football helmet",
        338: "Pig",
        339: "Person",
        340: "Shorts",
        341: "Gondola",
        342: "Honeycomb",
        343: "Doughnut",
        344: "Chest of drawers",
        345: "Land vehicle",
        346: "Bat",
        347: "Monkey",
        348: "Dagger",
        349: "Tableware",
        350: "Human foot",
        351: "Mug",
        352: "Alarm clock",
        353: "Pressure cooker",
        354: "Human hand",
        355: "Tortoise",
        356: "Baseball glove",
        357: "Sword",
        358: "Pear",
        359: "Miniskirt",
        360: "Traffic sign",
        361: "Girl",
        362: "Roller skates",
        363: "Dinosaur",
        364: "Porch",
        365: "Human beard",
        366: "Submarine sandwich",
        367: "Screwdriver",
        368: "Strawberry",
        369: "Wine glass",
        370: "Seafood",
        371: "Racket",
        372: "Wheel",
        373: "Sea lion",
        374: "Toy",
        375: "Tea",
        376: "Tennis ball",
        377: "Waste container",
        378: "Mule",
        379: "Cricket ball",
        380: "Pineapple",
        381: "Coconut",
        382: "Doll",
        383: "Coffee table",
        384: "Snowman",
        385: "Lavender",
        386: "Shrimp",
        387: "Maple",
        388: "Cowboy hat",
        389: "Goggles",
        390: "Rugby ball",
        391: "Caterpillar",
        392: "Poster",
        393: "Rocket",
        394: "Organ",
        395: "Saxophone",
        396: "Traffic light",
        397: "Cocktail",
        398: "Plastic bag",
        399: "Squash",
        400: "Mushroom",
        401: "Hamburger",
        402: "Light switch",
        403: "Parachute",
        404: "Teddy bear",
        405: "Winter melon",
        406: "Deer",
        407: "Musical keyboard",
        408: "Plumbing fixture",
        409: "Scoreboard",
        410: "Baseball bat",
        411: "Envelope",
        412: "Adhesive tape",
        413: "Briefcase",
        414: "Paddle",
        415: "Bow and arrow",
        416: "Telephone",
        417: "Sheep",
        418: "Jacket",
        419: "Boy",
        420: "Pizza",
        421: "Otter",
        422: "Office supplies",
        423: "Couch",
        424: "Cello",
        425: "Bull",
        426: "Camel",
        427: "Ball",
        428: "Duck",
        429: "Whale",
        430: "Shirt",
        431: "Tank",
        432: "Motorcycle",
        433: "Accordion",
        434: "Owl",
        435: "Porcupine",
        436: "Sun hat",
        437: "Nail",
        438: "Scissors",
        439: "Swan",
        440: "Lamp",
        441: "Crown",
        442: "Piano",
        443: "Sculpture",
        444: "Cheetah",
        445: "Oboe",
        446: "Tin can",
        447: "Mango",
        448: "Tripod",
        449: "Oven",
        450: "Mouse",
        451: "Barge",
        452: "Coffee",
        453: "Snowboard",
        454: "Common fig",
        455: "Salad",
        456: "Marine invertebrates",
        457: "Umbrella",
        458: "Kangaroo",
        459: "Human arm",
        460: "Measuring cup",
        461: "Snail",
        462: "Loveseat",
        463: "Suit",
        464: "Teapot",
        465: "Bottle",
        466: "Alpaca",
        467: "Kettle",
        468: "Trousers",
        469: "Popcorn",
        470: "Centipede",
        471: "Spider",
        472: "Sparrow",
        473: "Plate",
        474: "Bagel",
        475: "Personal care",
        476: "Apple",
        477: "Brassiere",
        478: "Bathroom cabinet",
        479: "studio couch",
        480: "Computer keyboard",
        481: "Table tennis racket",
        482: "Sushi",
        483: "Cabinetry",
        484: "Street light",
        485: "Towel",
        486: "Nightstand",
        487: "Rabbit",
        488: "Dolphin",
        489: "Dog",
        490: "Jug",
        491: "Wok",
        492: "Fire hydrant",
        493: "Human eye",
        494: "Skyscraper",
        495: "Backpack",
        496: "Potato",
        497: "Paper towel",
        498: "Lifejacket",
        499: "Bicycle wheel",
        500: "Toilet",
    }

    return clsid2catid, catid2name
923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940


def _visdrone_category():
    clsid2catid = {i: i for i in range(10)}

    catid2name = {
        0: 'pedestrian',
        1: 'people',
        2: 'bicycle',
        3: 'car',
        4: 'van',
        5: 'truck',
        6: 'tricycle',
        7: 'awning-tricycle',
        8: 'bus',
        9: 'motor'
    }
    return clsid2catid, catid2name