mcmot_metrics.py 15.6 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved. 
#   
# Licensed under the Apache License, Version 2.0 (the "License");   
# you may not use this file except in compliance with the License.  
# You may obtain a copy of the License at   
#   
#     http://www.apache.org/licenses/LICENSE-2.0    
#   
# Unless required by applicable law or agreed to in writing, software   
# distributed under the License is distributed on an "AS IS" BASIS, 
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.  
# See the License for the specific language governing permissions and   
# limitations under the License.

from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

import os
import copy
import sys
import math
from collections import defaultdict
from motmetrics.math_util import quiet_divide

import numpy as np
import pandas as pd

import paddle
import paddle.nn.functional as F
from .metrics import Metric
import motmetrics as mm
import openpyxl
metrics = mm.metrics.motchallenge_metrics
mh = mm.metrics.create()
from ppdet.utils.logger import setup_logger
logger = setup_logger(__name__)

__all__ = ['MCMOTEvaluator', 'MCMOTMetric']

METRICS_LIST = [
    'num_frames', 'num_matches', 'num_switches', 'num_transfer', 'num_ascend',
    'num_migrate', 'num_false_positives', 'num_misses', 'num_detections',
    'num_objects', 'num_predictions', 'num_unique_objects', 'mostly_tracked',
    'partially_tracked', 'mostly_lost', 'num_fragmentations', 'motp', 'mota',
    'precision', 'recall', 'idfp', 'idfn', 'idtp', 'idp', 'idr', 'idf1'
]

NAME_MAP = {
    'num_frames': 'num_frames',
    'num_matches': 'num_matches',
    'num_switches': 'IDs',
    'num_transfer': 'IDt',
    'num_ascend': 'IDa',
    'num_migrate': 'IDm',
    'num_false_positives': 'FP',
    'num_misses': 'FN',
    'num_detections': 'num_detections',
    'num_objects': 'num_objects',
    'num_predictions': 'num_predictions',
    'num_unique_objects': 'GT',
    'mostly_tracked': 'MT',
    'partially_tracked': 'partially_tracked',
    'mostly_lost': 'ML',
    'num_fragmentations': 'FM',
    'motp': 'MOTP',
    'mota': 'MOTA',
    'precision': 'Prcn',
    'recall': 'Rcll',
    'idfp': 'idfp',
    'idfn': 'idfn',
    'idtp': 'idtp',
    'idp': 'IDP',
    'idr': 'IDR',
    'idf1': 'IDF1'
}


def parse_accs_metrics(seq_acc, index_name, verbose=False):
    """
    Parse the evaluation indicators of multiple MOTAccumulator 
    """
    mh = mm.metrics.create()
    summary = MCMOTEvaluator.get_summary(seq_acc, index_name, METRICS_LIST)
    summary.loc['OVERALL', 'motp'] = (summary['motp'] * summary['num_detections']).sum() / \
                                     summary.loc['OVERALL', 'num_detections']
    if verbose:
        strsummary = mm.io.render_summary(
            summary, formatters=mh.formatters, namemap=NAME_MAP)
        print(strsummary)

    return summary


def seqs_overall_metrics(summary_df, verbose=False):
    """
    Calculate overall metrics for multiple sequences
    """
    add_col = [
        'num_frames', 'num_matches', 'num_switches', 'num_transfer',
        'num_ascend', 'num_migrate', 'num_false_positives', 'num_misses',
        'num_detections', 'num_objects', 'num_predictions',
        'num_unique_objects', 'mostly_tracked', 'partially_tracked',
        'mostly_lost', 'num_fragmentations', 'idfp', 'idfn', 'idtp'
    ]
    calc_col = ['motp', 'mota', 'precision', 'recall', 'idp', 'idr', 'idf1']
    calc_df = summary_df.copy()

    overall_dic = {}
    for col in add_col:
        overall_dic[col] = calc_df[col].sum()

    for col in calc_col:
        overall_dic[col] = getattr(MCMOTMetricOverall, col + '_overall')(
            calc_df, overall_dic)

    overall_df = pd.DataFrame(overall_dic, index=['overall_calc'])
    calc_df = pd.concat([calc_df, overall_df])

    if verbose:
        mh = mm.metrics.create()
        str_calc_df = mm.io.render_summary(
            calc_df, formatters=mh.formatters, namemap=NAME_MAP)
        print(str_calc_df)

    return calc_df


class MCMOTMetricOverall(object):
    def motp_overall(summary_df, overall_dic):
        motp = quiet_divide((summary_df['motp'] *
                             summary_df['num_detections']).sum(),
                            overall_dic['num_detections'])
        return motp

    def mota_overall(summary_df, overall_dic):
        del summary_df
        mota = 1. - quiet_divide(
            (overall_dic['num_misses'] + overall_dic['num_switches'] +
             overall_dic['num_false_positives']), overall_dic['num_objects'])
        return mota

    def precision_overall(summary_df, overall_dic):
        del summary_df
        precision = quiet_divide(overall_dic['num_detections'], (
            overall_dic['num_false_positives'] + overall_dic['num_detections']))
        return precision

    def recall_overall(summary_df, overall_dic):
        del summary_df
        recall = quiet_divide(overall_dic['num_detections'],
                              overall_dic['num_objects'])
        return recall

    def idp_overall(summary_df, overall_dic):
        del summary_df
        idp = quiet_divide(overall_dic['idtp'],
                           (overall_dic['idtp'] + overall_dic['idfp']))
        return idp

    def idr_overall(summary_df, overall_dic):
        del summary_df
        idr = quiet_divide(overall_dic['idtp'],
                           (overall_dic['idtp'] + overall_dic['idfn']))
        return idr

    def idf1_overall(summary_df, overall_dic):
        del summary_df
        idf1 = quiet_divide(2. * overall_dic['idtp'], (
            overall_dic['num_objects'] + overall_dic['num_predictions']))
        return idf1


def read_mcmot_results_union(filename, is_gt, is_ignore):
    results_dict = dict()
    if os.path.isfile(filename):
        all_result = np.loadtxt(filename, delimiter=',')
        if all_result.shape[0] == 0 or all_result.shape[1] < 7:
            return results_dict
        if is_ignore:
            return results_dict
        if is_gt:
            # only for test use
            all_result = all_result[all_result[:, 7] != 0]
            all_result[:, 7] = all_result[:, 7] - 1

        if all_result.shape[0] == 0:
            return results_dict

        class_unique = np.unique(all_result[:, 7])

        last_max_id = 0
        result_cls_list = []
        for cls in class_unique:
            result_cls_split = all_result[all_result[:, 7] == cls]
            result_cls_split[:, 1] = result_cls_split[:, 1] + last_max_id
            # make sure track id different between every category
            last_max_id = max(np.unique(result_cls_split[:, 1])) + 1
            result_cls_list.append(result_cls_split)

        results_con = np.concatenate(result_cls_list)

        for line in range(len(results_con)):
            linelist = results_con[line]
            fid = int(linelist[0])
            if fid < 1:
                continue
            results_dict.setdefault(fid, list())

            if is_gt:
                score = 1
            else:
                score = float(linelist[6])

            tlwh = tuple(map(float, linelist[2:6]))
            target_id = int(linelist[1])
            cls = int(linelist[7])

            results_dict[fid].append((tlwh, target_id, cls, score))

        return results_dict


def read_mcmot_results(filename, is_gt, is_ignore):
    results_dict = dict()
    if os.path.isfile(filename):
        with open(filename, 'r') as f:
            for line in f.readlines():
                linelist = line.strip().split(',')
                if len(linelist) < 7:
                    continue
                fid = int(linelist[0])
                if fid < 1:
                    continue
                cid = int(linelist[7])
                if is_gt:
                    score = 1
                    # only for test use
                    cid -= 1
                else:
                    score = float(linelist[6])

                cls_result_dict = results_dict.setdefault(cid, dict())
                cls_result_dict.setdefault(fid, list())

                tlwh = tuple(map(float, linelist[2:6]))
                target_id = int(linelist[1])
                cls_result_dict[fid].append((tlwh, target_id, score))
    return results_dict


def read_results(filename,
                 data_type,
                 is_gt=False,
                 is_ignore=False,
                 multi_class=False,
                 union=False):
    if data_type in ['mcmot', 'lab']:
        if multi_class:
            if union:
                # The results are evaluated by union all the categories.
                # Track IDs between different categories cannot be duplicate.
                read_fun = read_mcmot_results_union
            else:
                # The results are evaluated separately by category.
                read_fun = read_mcmot_results
        else:
            raise ValueError('multi_class: {}, MCMOT should have cls_id.'.
                             format(multi_class))
    else:
        raise ValueError('Unknown data type: {}'.format(data_type))

    return read_fun(filename, is_gt, is_ignore)


def unzip_objs(objs):
    if len(objs) > 0:
        tlwhs, ids, scores = zip(*objs)
    else:
        tlwhs, ids, scores = [], [], []
    tlwhs = np.asarray(tlwhs, dtype=float).reshape(-1, 4)
    return tlwhs, ids, scores


def unzip_objs_cls(objs):
    if len(objs) > 0:
        tlwhs, ids, cls, scores = zip(*objs)
    else:
        tlwhs, ids, cls, scores = [], [], [], []
    tlwhs = np.asarray(tlwhs, dtype=float).reshape(-1, 4)
    ids = np.array(ids)
    cls = np.array(cls)
    scores = np.array(scores)
    return tlwhs, ids, cls, scores


class MCMOTEvaluator(object):
    def __init__(self, data_root, seq_name, data_type, num_classes):
        self.data_root = data_root
        self.seq_name = seq_name
        self.data_type = data_type
        self.num_classes = num_classes

        self.load_annotations()
        self.reset_accumulator()

        self.class_accs = []

    def load_annotations(self):
        assert self.data_type == 'mcmot'
311
        self.gt_filename = os.path.join(self.data_root, '../',
312 313
                                        'sequences',
                                        '{}.txt'.format(self.seq_name))
314
        
315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467
    def reset_accumulator(self):
        import motmetrics as mm
        mm.lap.default_solver = 'lap'
        self.acc = mm.MOTAccumulator(auto_id=True)

    def eval_frame_dict(self, trk_objs, gt_objs, rtn_events=False, union=False):
        import motmetrics as mm
        mm.lap.default_solver = 'lap'
        if union:
            trk_tlwhs, trk_ids, trk_cls = unzip_objs_cls(trk_objs)[:3]
            gt_tlwhs, gt_ids, gt_cls = unzip_objs_cls(gt_objs)[:3]

            # get distance matrix
            iou_distance = mm.distances.iou_matrix(
                gt_tlwhs, trk_tlwhs, max_iou=0.5)

            # Set the distance between objects of different categories to nan
            gt_cls_len = len(gt_cls)
            trk_cls_len = len(trk_cls)
            # When the number of GT or Trk is 0, iou_distance dimension is (0,0)
            if gt_cls_len != 0 and trk_cls_len != 0:
                gt_cls = gt_cls.reshape(gt_cls_len, 1)
                gt_cls = np.repeat(gt_cls, trk_cls_len, axis=1)
                trk_cls = trk_cls.reshape(1, trk_cls_len)
                trk_cls = np.repeat(trk_cls, gt_cls_len, axis=0)
                iou_distance = np.where(gt_cls == trk_cls, iou_distance, np.nan)

        else:
            trk_tlwhs, trk_ids = unzip_objs(trk_objs)[:2]
            gt_tlwhs, gt_ids = unzip_objs(gt_objs)[:2]

            # get distance matrix
            iou_distance = mm.distances.iou_matrix(
                gt_tlwhs, trk_tlwhs, max_iou=0.5)

        self.acc.update(gt_ids, trk_ids, iou_distance)

        if rtn_events and iou_distance.size > 0 and hasattr(self.acc,
                                                            'mot_events'):
            events = self.acc.mot_events  # only supported by https://github.com/longcw/py-motmetrics
        else:
            events = None
        return events

    def eval_file(self, result_filename):
        # evaluation of each category
        gt_frame_dict = read_results(
            self.gt_filename,
            self.data_type,
            is_gt=True,
            multi_class=True,
            union=False)
        result_frame_dict = read_results(
            result_filename,
            self.data_type,
            is_gt=False,
            multi_class=True,
            union=False)

        for cid in range(self.num_classes):
            self.reset_accumulator()
            cls_result_frame_dict = result_frame_dict.setdefault(cid, dict())
            cls_gt_frame_dict = gt_frame_dict.setdefault(cid, dict())

            # only labeled frames will be evaluated
            frames = sorted(list(set(cls_gt_frame_dict.keys())))

            for frame_id in frames:
                trk_objs = cls_result_frame_dict.get(frame_id, [])
                gt_objs = cls_gt_frame_dict.get(frame_id, [])
                self.eval_frame_dict(trk_objs, gt_objs, rtn_events=False)

            self.class_accs.append(self.acc)

        return self.class_accs

    @staticmethod
    def get_summary(accs,
                    names,
                    metrics=('mota', 'num_switches', 'idp', 'idr', 'idf1',
                             'precision', 'recall')):
        import motmetrics as mm
        mm.lap.default_solver = 'lap'

        names = copy.deepcopy(names)
        if metrics is None:
            metrics = mm.metrics.motchallenge_metrics
        metrics = copy.deepcopy(metrics)

        mh = mm.metrics.create()
        summary = mh.compute_many(
            accs, metrics=metrics, names=names, generate_overall=True)

        return summary

    @staticmethod
    def save_summary(summary, filename):
        import pandas as pd
        writer = pd.ExcelWriter(filename)
        summary.to_excel(writer)
        writer.save()


class MCMOTMetric(Metric):
    def __init__(self, num_classes, save_summary=False):
        self.num_classes = num_classes
        self.save_summary = save_summary
        self.MCMOTEvaluator = MCMOTEvaluator
        self.result_root = None
        self.reset()

        self.seqs_overall = defaultdict(list)

    def reset(self):
        self.accs = []
        self.seqs = []

    def update(self, data_root, seq, data_type, result_root, result_filename):
        evaluator = self.MCMOTEvaluator(data_root, seq, data_type,
                                        self.num_classes)
        seq_acc = evaluator.eval_file(result_filename)
        self.accs.append(seq_acc)
        self.seqs.append(seq)
        self.result_root = result_root

        cls_index_name = [
            '{}_{}'.format(seq, i) for i in range(self.num_classes)
        ]
        summary = parse_accs_metrics(seq_acc, cls_index_name)
        summary.rename(
            index={'OVERALL': '{}_OVERALL'.format(seq)}, inplace=True)
        for row in range(len(summary)):
            self.seqs_overall[row].append(summary.iloc[row:row + 1])

    def accumulate(self):
        self.cls_summary_list = []
        for row in range(self.num_classes):
            seqs_cls_df = pd.concat(self.seqs_overall[row])
            seqs_cls_summary = seqs_overall_metrics(seqs_cls_df)
            cls_summary_overall = seqs_cls_summary.iloc[-1:].copy()
            cls_summary_overall.rename(
                index={'overall_calc': 'overall_calc_{}'.format(row)},
                inplace=True)
            self.cls_summary_list.append(cls_summary_overall)

    def log(self):
        seqs_summary = seqs_overall_metrics(
            pd.concat(self.seqs_overall[self.num_classes]), verbose=True)
        class_summary = seqs_overall_metrics(
            pd.concat(self.cls_summary_list), verbose=True)

    def get_results(self):
        return 1