mot_keypoint_unite_infer.py 11.1 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import os
W
wangguanzhong 已提交
16
import json
17 18 19 20
import cv2
import math
import numpy as np
import paddle
W
wangguanzhong 已提交
21 22 23
import yaml
import copy
from collections import defaultdict
24

25
from mot_keypoint_unite_utils import argsparser
W
wangguanzhong 已提交
26 27
from preprocess import decode_image
from infer import print_arguments, get_test_images
28
from mot_sde_infer import SDE_Detector
W
wangguanzhong 已提交
29 30 31 32 33 34 35
from mot_jde_infer import JDE_Detector, MOT_JDE_SUPPORT_MODELS
from keypoint_infer import KeyPointDetector, KEYPOINT_SUPPORT_MODELS
from det_keypoint_unite_infer import predict_with_given_det
from visualize import visualize_pose
from benchmark_utils import PaddleInferBenchmark
from utils import get_current_memory_mb
from keypoint_postprocess import translate_to_ori_images
36

W
wangguanzhong 已提交
37 38 39 40
# add python path
import sys
parent_path = os.path.abspath(os.path.join(__file__, *(['..'] * 2)))
sys.path.insert(0, parent_path)
G
George Ni 已提交
41

W
wangguanzhong 已提交
42 43
from pptracking.python.visualize import plot_tracking, plot_tracking_dict
from pptracking.python.mot.utils import MOTTimer as FPSTimer
G
George Ni 已提交
44

45 46 47 48 49 50 51 52 53 54

def convert_mot_to_det(tlwhs, scores):
    results = {}
    num_mot = len(tlwhs)
    xyxys = copy.deepcopy(tlwhs)
    for xyxy in xyxys.copy():
        xyxy[2:] = xyxy[2:] + xyxy[:2]
    # support single class now
    results['boxes'] = np.vstack(
        [np.hstack([0, scores[i], xyxys[i]]) for i in range(num_mot)])
W
wangguanzhong 已提交
55
    results['boxes_num'] = np.array([num_mot])
56 57 58
    return results


W
wangguanzhong 已提交
59 60 61 62 63 64 65
def mot_topdown_unite_predict(mot_detector,
                              topdown_keypoint_detector,
                              image_list,
                              keypoint_batch_size=1,
                              save_res=False):
    det_timer = mot_detector.get_timer()
    store_res = []
G
George Ni 已提交
66
    image_list.sort()
W
wangguanzhong 已提交
67
    num_classes = mot_detector.num_classes
G
George Ni 已提交
68
    for i, img_file in enumerate(image_list):
W
wangguanzhong 已提交
69 70 71 72
        # Decode image in advance in mot + pose prediction
        det_timer.preprocess_time_s.start()
        image, _ = decode_image(img_file, {})
        det_timer.preprocess_time_s.end()
G
George Ni 已提交
73 74

        if FLAGS.run_benchmark:
W
wangguanzhong 已提交
75 76
            mot_results = mot_detector.predict_image(
                [image], run_benchmark=True, repeats=10)
77

W
wangguanzhong 已提交
78 79 80 81
            cm, gm, gu = get_current_memory_mb()
            mot_detector.cpu_mem += cm
            mot_detector.gpu_mem += gm
            mot_detector.gpu_util += gu
82
        else:
W
wangguanzhong 已提交
83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101
            mot_results = mot_detector.predict_image([image], visual=False)

        online_tlwhs, online_scores, online_ids = mot_results[
            0]  # only support bs=1 in MOT model
        results = convert_mot_to_det(
            online_tlwhs[0],
            online_scores[0])  # only support single class for mot + pose
        if results['boxes_num'] == 0:
            continue

        keypoint_res = predict_with_given_det(
            image, results, topdown_keypoint_detector, keypoint_batch_size,
            FLAGS.mot_threshold, FLAGS.keypoint_threshold, FLAGS.run_benchmark)

        if save_res:
            store_res.append([
                i, keypoint_res['bbox'],
                [keypoint_res['keypoint'][0], keypoint_res['keypoint'][1]]
            ])
102
        if FLAGS.run_benchmark:
G
George Ni 已提交
103
            cm, gm, gu = get_current_memory_mb()
W
wangguanzhong 已提交
104 105 106
            topdown_keypoint_detector.cpu_mem += cm
            topdown_keypoint_detector.gpu_mem += gm
            topdown_keypoint_detector.gpu_util += gu
G
George Ni 已提交
107
        else:
W
wangguanzhong 已提交
108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133
            if not os.path.exists(FLAGS.output_dir):
                os.makedirs(FLAGS.output_dir)
            visualize_pose(
                img_file,
                keypoint_res,
                visual_thresh=FLAGS.keypoint_threshold,
                save_dir=FLAGS.output_dir)

    if save_res:
        """
        1) store_res: a list of image_data
        2) image_data: [imageid, rects, [keypoints, scores]]
        3) rects: list of rect [xmin, ymin, xmax, ymax]
        4) keypoints: 17(joint numbers)*[x, y, conf], total 51 data in list
        5) scores: mean of all joint conf
        """
        with open("det_keypoint_unite_image_results.json", 'w') as wf:
            json.dump(store_res, wf, indent=4)


def mot_topdown_unite_predict_video(mot_detector,
                                    topdown_keypoint_detector,
                                    camera_id,
                                    keypoint_batch_size=1,
                                    save_res=False):
    video_name = 'output.mp4'
134 135 136 137 138
    if camera_id != -1:
        capture = cv2.VideoCapture(camera_id)
    else:
        capture = cv2.VideoCapture(FLAGS.video_file)
        video_name = os.path.split(FLAGS.video_file)[-1]
139
    # Get Video info : resolution, fps, frame count
140 141
    width = int(capture.get(cv2.CAP_PROP_FRAME_WIDTH))
    height = int(capture.get(cv2.CAP_PROP_FRAME_HEIGHT))
142 143 144 145
    fps = int(capture.get(cv2.CAP_PROP_FPS))
    frame_count = int(capture.get(cv2.CAP_PROP_FRAME_COUNT))
    print("fps: %d, frame_count: %d" % (fps, frame_count))

146 147 148
    if not os.path.exists(FLAGS.output_dir):
        os.makedirs(FLAGS.output_dir)
    out_path = os.path.join(FLAGS.output_dir, video_name)
W
wangguanzhong 已提交
149 150
    fourcc = cv2.VideoWriter_fourcc(*'mp4v')
    writer = cv2.VideoWriter(out_path, fourcc, fps, (width, height))
151
    frame_id = 0
W
wangguanzhong 已提交
152
    timer_mot, timer_kp, timer_mot_kp = FPSTimer(), FPSTimer(), FPSTimer()
153

W
wangguanzhong 已提交
154
    num_classes = mot_detector.num_classes
155 156 157
    assert num_classes == 1, 'Only one category mot model supported for uniting keypoint deploy.'
    data_type = 'mot'

158 159 160 161
    while (1):
        ret, frame = capture.read()
        if not ret:
            break
W
wangguanzhong 已提交
162 163 164
        if frame_id % 10 == 0:
            print('Tracking frame: %d' % (frame_id))
        frame_id += 1
165
        timer_mot_kp.tic()
W
wangguanzhong 已提交
166 167

        # mot model
168
        timer_mot.tic()
W
wangguanzhong 已提交
169
        mot_results = mot_detector.predict_image([frame], visual=False)
170
        timer_mot.toc()
W
wangguanzhong 已提交
171 172 173 174 175 176 177 178
        online_tlwhs, online_scores, online_ids = mot_results[0]
        results = convert_mot_to_det(
            online_tlwhs[0],
            online_scores[0])  # only support single class for mot + pose
        if results['boxes_num'] == 0:
            continue

        # keypoint model
179
        timer_kp.tic()
W
wangguanzhong 已提交
180 181 182
        keypoint_res = predict_with_given_det(
            frame, results, topdown_keypoint_detector, keypoint_batch_size,
            FLAGS.mot_threshold, FLAGS.keypoint_threshold, FLAGS.run_benchmark)
183 184 185
        timer_kp.toc()
        timer_mot_kp.toc()

W
wangguanzhong 已提交
186 187 188 189
        kp_fps = 1. / timer_kp.duration
        mot_kp_fps = 1. / timer_mot_kp.duration

        im = visualize_pose(
190
            frame,
W
wangguanzhong 已提交
191 192
            keypoint_res,
            visual_thresh=FLAGS.keypoint_threshold,
193
            returnimg=True,
W
wangguanzhong 已提交
194
            ids=online_ids[0])
195

W
wangguanzhong 已提交
196
        im = plot_tracking_dict(
197
            im,
198
            num_classes,
199 200 201 202 203 204
            online_tlwhs,
            online_ids,
            online_scores,
            frame_id=frame_id,
            fps=mot_kp_fps)

W
wangguanzhong 已提交
205
        writer.write(im)
206 207 208 209 210
        if camera_id != -1:
            cv2.imshow('Tracking and keypoint results', im)
            if cv2.waitKey(1) & 0xFF == ord('q'):
                break

W
wangguanzhong 已提交
211 212
    writer.release()
    print('output_video saved to: {}'.format(out_path))
213 214


W
wangguanzhong 已提交
215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238
def main():
    deploy_file = os.path.join(FLAGS.mot_model_dir, 'infer_cfg.yml')
    with open(deploy_file) as f:
        yml_conf = yaml.safe_load(f)
    arch = yml_conf['arch']
    mot_detector_func = 'SDE_Detector'
    if arch in MOT_JDE_SUPPORT_MODELS:
        mot_detector_func = 'JDE_Detector'

    mot_detector = eval(mot_detector_func)(FLAGS.mot_model_dir,
                                           FLAGS.tracker_config,
                                           device=FLAGS.device,
                                           run_mode=FLAGS.run_mode,
                                           batch_size=1,
                                           trt_min_shape=FLAGS.trt_min_shape,
                                           trt_max_shape=FLAGS.trt_max_shape,
                                           trt_opt_shape=FLAGS.trt_opt_shape,
                                           trt_calib_mode=FLAGS.trt_calib_mode,
                                           cpu_threads=FLAGS.cpu_threads,
                                           enable_mkldnn=FLAGS.enable_mkldnn,
                                           threshold=FLAGS.mot_threshold,
                                           output_dir=FLAGS.output_dir)

    topdown_keypoint_detector = KeyPointDetector(
239 240 241
        FLAGS.keypoint_model_dir,
        device=FLAGS.device,
        run_mode=FLAGS.run_mode,
242
        batch_size=FLAGS.keypoint_batch_size,
243 244 245 246 247 248
        trt_min_shape=FLAGS.trt_min_shape,
        trt_max_shape=FLAGS.trt_max_shape,
        trt_opt_shape=FLAGS.trt_opt_shape,
        trt_calib_mode=FLAGS.trt_calib_mode,
        cpu_threads=FLAGS.cpu_threads,
        enable_mkldnn=FLAGS.enable_mkldnn,
W
wangguanzhong 已提交
249 250
        threshold=FLAGS.keypoint_threshold,
        output_dir=FLAGS.output_dir,
251
        use_dark=FLAGS.use_dark)
W
wangguanzhong 已提交
252 253 254
    keypoint_arch = topdown_keypoint_detector.pred_config.arch
    assert KEYPOINT_SUPPORT_MODELS[
        keypoint_arch] == 'keypoint_topdown', 'MOT-Keypoint unite inference only supports topdown models.'
255 256 257

    # predict from video file or camera video stream
    if FLAGS.video_file is not None or FLAGS.camera_id != -1:
W
wangguanzhong 已提交
258 259 260
        mot_topdown_unite_predict_video(
            mot_detector, topdown_keypoint_detector, FLAGS.camera_id,
            FLAGS.keypoint_batch_size, FLAGS.save_res)
261
    else:
G
George Ni 已提交
262 263
        # predict from image
        img_list = get_test_images(FLAGS.image_dir, FLAGS.image_file)
W
wangguanzhong 已提交
264 265 266
        mot_topdown_unite_predict(mot_detector, topdown_keypoint_detector,
                                  img_list, FLAGS.keypoint_batch_size,
                                  FLAGS.save_res)
G
George Ni 已提交
267
        if not FLAGS.run_benchmark:
W
wangguanzhong 已提交
268 269
            mot_detector.det_times.info(average=True)
            topdown_keypoint_detector.det_times.info(average=True)
G
George Ni 已提交
270 271 272 273 274 275 276
        else:
            mode = FLAGS.run_mode
            mot_model_dir = FLAGS.mot_model_dir
            mot_model_info = {
                'model_name': mot_model_dir.strip('/').split('/')[-1],
                'precision': mode.split('_')[-1]
            }
W
wangguanzhong 已提交
277
            bench_log(mot_detector, img_list, mot_model_info, name='MOT')
G
George Ni 已提交
278 279 280 281 282 283

            keypoint_model_dir = FLAGS.keypoint_model_dir
            keypoint_model_info = {
                'model_name': keypoint_model_dir.strip('/').split('/')[-1],
                'precision': mode.split('_')[-1]
            }
W
wangguanzhong 已提交
284 285
            bench_log(topdown_keypoint_detector, img_list, keypoint_model_info,
                      FLAGS.keypoint_batch_size, 'KeyPoint')
286 287 288 289 290 291 292 293 294 295 296 297


if __name__ == '__main__':
    paddle.enable_static()
    parser = argsparser()
    FLAGS = parser.parse_args()
    print_arguments(FLAGS)
    FLAGS.device = FLAGS.device.upper()
    assert FLAGS.device in ['CPU', 'GPU', 'XPU'
                            ], "device should be CPU, GPU or XPU"

    main()