op_registry.h 13.3 KB
Newer Older
1 2
#pragma once

3
#include <algorithm>
4
#include <atomic>
Y
Yu Yang 已提交
5
#include <type_traits>
6 7
#include <unordered_map>
#include <unordered_set>
Q
Qiao Longfei 已提交
8
#include "paddle/framework/attr_checker.h"
9 10
#include "paddle/framework/op_desc.pb.h"
#include "paddle/framework/op_proto.pb.h"
Q
Qiao Longfei 已提交
11
#include "paddle/framework/operator.h"
12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64

namespace paddle {
namespace framework {

// helper class to set attribute type
struct AttrTypeHelper {
  template <typename T>
  static void SetAttrType(AttrProto* attr);

  static Attribute GetAttrValue(const AttrDesc& attr_desc) {
    switch (attr_desc.type()) {
      case paddle::framework::AttrType::INT: {
        return attr_desc.i();
      }
      case paddle::framework::AttrType::FLOAT: {
        return attr_desc.f();
      }
      case paddle::framework::AttrType::STRING: {
        return attr_desc.s();
      }
      case paddle::framework::AttrType::INTS: {
        std::vector<int> val(attr_desc.ints_size());
        for (int i = 0; i < attr_desc.ints_size(); ++i) {
          val[i] = attr_desc.ints(i);
        }
        return val;
      }
      case paddle::framework::AttrType::FLOATS: {
        std::vector<float> val(attr_desc.floats_size());
        for (int i = 0; i < attr_desc.floats_size(); ++i) {
          val[i] = attr_desc.floats(i);
        }
        return val;
      }
      case paddle::framework::AttrType::STRINGS: {
        std::vector<std::string> val(attr_desc.strings_size());
        for (int i = 0; i < attr_desc.strings_size(); ++i) {
          val[i] = attr_desc.strings(i);
        }
        return val;
      }
    }
    PADDLE_ENFORCE(false, "Unknown OpDesc::AttrDesc::type !");
    return boost::blank();
  }
};

// this class not only make proto but also init attribute checkers.
class OpProtoAndCheckerMaker {
 public:
  OpProtoAndCheckerMaker(OpProto* proto, OpAttrChecker* op_checker)
      : proto_(proto), op_checker_(op_checker) {}

65 66 67 68 69 70 71 72
  ~OpProtoAndCheckerMaker() {
    PADDLE_ENFORCE(validated_, "should call Validate after build");
  }

  void Validate() {
    validated_ = true;
    CheckNoDuplicatedInOutAttrs();
  }
73

74
 protected:
75 76
  void AddInput(const std::string& name, const std::string& comment,
                bool multiple = false) {
77
    auto input = proto_->mutable_inputs()->Add();
78 79
    *input->mutable_name() = name;
    *input->mutable_comment() = comment;
80 81 82 83 84 85 86 87
    input->set_multiple(multiple);
    if (multiple) {
      SetHasMultipleInput();
    }
  }

  void AddInputs(const std::string& name, const std::string& comment) {
    AddInput(name, comment, true);
88 89
  }

90 91
  void AddOutput(const std::string& name, const std::string& comment,
                 bool temporary = false, bool multiple = false) {
92
    auto output = proto_->mutable_outputs()->Add();
93 94
    *output->mutable_name() = name;
    *output->mutable_comment() = comment;
95 96 97 98 99 100 101 102 103 104 105 106 107
    output->set_multiple(multiple);
    if (multiple) {
      SetHasMultipleOutput();
    }
    output->set_temporary(temporary);
    if (temporary) {
      SetHasTemporaryOutput();
    }
  }

  void AddOutputs(const std::string& name, const std::string& comment,
                  bool temporary = false) {
    AddOutput(name, comment, temporary, true);
108 109 110 111
  }

  template <typename T>
  TypedAttrChecker<T>& AddAttr(const std::string& name,
112 113
                               const std::string& comment,
                               bool generated = false) {
114
    auto attr = proto_->mutable_attrs()->Add();
115 116
    *attr->mutable_name() = name;
    *attr->mutable_comment() = comment;
117
    attr->set_generated(generated);
118 119 120 121 122 123 124 125
    AttrTypeHelper::SetAttrType<T>(attr);
    return op_checker_->AddAttrChecker<T>(name);
  }

  void AddComment(const std::string& comment) {
    *(proto_->mutable_comment()) = comment;
  }

126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173
 private:
  void SetHasMultiple(const std::string& in_out, bool* flag) {
    if (!*flag) {
      AddAttr<std::vector<int>>(in_out + "_format",
                                "The multiple index of " + in_out +
                                    "\n"
                                    R"DOC(
This attribute is used by Paddle core framework. Paddle's Op support each input
or output could be a list of variable. This attribute is used to show how that
list organized.

e.g.
  input = ["a", "b", "c", "d", "e", "f"]
  input_format = [0, 4, 5, 6]

means
  The number of all input variables this op is six, and they are segmented into
  three inputs.

  The first input is input[0:4], second is input[4:5], third is input[5:6].
)DOC",
                                /*generated*/ true);
      *flag = true;
    }
  }

  void SetHasMultipleInput() { SetHasMultiple("input", &has_multiple_input_); }
  void SetHasMultipleOutput() {
    SetHasMultiple("output", &has_multiple_output_);
  }

  void SetHasTemporaryOutput() {
    if (!has_temporary_output_) {
      AddAttr<std::vector<int>>("temporary_index",
                                R"DOC(The temporary index of output.

Not all output of Paddle Op is used by user. For faster computation, each op
could output some its internal state to other op, other op could take that
output to make compute faster.

Add a mark to which output is temporary is helpful for future optimization.
)DOC",
                                /*generated*/ true)
          .SetDefault(std::vector<int>());
      has_temporary_output_ = true;
    }
  }

174
  void CheckNoDuplicatedInOutAttrs() {
175
    std::unordered_set<std::string> names;
176 177 178 179
    auto checker = [&](const std::string& name) {
      PADDLE_ENFORCE(!names.count(name), "[%s] is duplicated", name);
      names.insert(name);
    };
180
    for (auto& attr : proto_->attrs()) {
181 182 183 184 185 186 187
      checker(attr.name());
    }
    for (auto& input : proto_->inputs()) {
      checker(input.name());
    }
    for (auto& output : proto_->outputs()) {
      checker(output.name());
188 189 190
    }
  }

191 192
  OpProto* proto_;
  OpAttrChecker* op_checker_;
193
  bool validated_{false};
194 195 196
  bool has_multiple_input_{false};
  bool has_multiple_output_{false};
  bool has_temporary_output_{false};
197 198 199
};

class OpRegistry {
Q
Qiao Longfei 已提交
200
  using OpCreator = std::function<OperatorBase*()>;
Y
Yu Yang 已提交
201
  using VarIndexMap = std::unordered_map<std::string, int>;
Y
Yu Yang 已提交
202
  using VarNameList = std::vector<std::string>;
203 204 205 206

 public:
  template <typename OpType, typename ProtoMakerType>
  static void RegisterOp(const std::string& op_type) {
207 208 209
    creators()[op_type] = [] { return new OpType; };
    OpProto& op_proto = protos()[op_type];
    OpAttrChecker& op_checker = op_checkers()[op_type];
210 211
    auto maker = ProtoMakerType(&op_proto, &op_checker);
    maker.Validate();
Y
Yu Yang 已提交
212 213 214 215 216
    *op_proto.mutable_type() = op_type;
    PADDLE_ENFORCE(
        op_proto.IsInitialized(),
        "Fail to initialize %s's OpProto, because %s is not initialized",
        op_type, op_proto.InitializationErrorString());
Y
Yu Yang 已提交
217 218 219 220 221 222 223 224 225 226 227

    VarIndexMaps()[op_type].reset(new VarIndexMap());
    auto& varmap = *VarIndexMaps()[op_type];
    int idx = 0;
    for (auto& var : op_proto.inputs()) {
      varmap[var.name()] = idx++;
    }
    idx = 0;
    for (auto& var : op_proto.outputs()) {
      varmap[var.name()] = idx++;
    }
228 229
  }

Y
Yu Yang 已提交
230 231 232 233
  static std::shared_ptr<OperatorBase> CreateOp(const std::string& type,
                                                const VarNameList& inputs,
                                                const VarNameList& outputs,
                                                const AttributeMap& attrs) {
Y
Yu Yang 已提交
234 235 236
    auto op_create_it = creators().find(type);
    PADDLE_ENFORCE(op_create_it != creators().end(),
                   "Operator %s cannot be found", type);
237

Y
Yu Yang 已提交
238 239 240 241 242 243
    auto op = op_create_it->second();
    op->type_ = type;
    op->inputs_ = inputs;
    op->outputs_ = outputs;
    op->attrs_ = attrs;
    op_checkers().at(type).Check(op->attrs_);
244

Y
Yu Yang 已提交
245
    GenerateTempVariableName(op);
246

Y
Yu Yang 已提交
247
    {
Y
Yu Yang 已提交
248
      auto var_index_it = VarIndexMaps().find(type);
Y
Yu Yang 已提交
249 250 251 252
      if (var_index_it != VarIndexMaps().end()) {
        op->in_out_idxs_ = var_index_it->second;
      }
    }
Y
Yu Yang 已提交
253

Q
Qiao Longfei 已提交
254
    op->Init();
Y
Yu Yang 已提交
255
    return std::shared_ptr<OperatorBase>(op);
Y
Yu Yang 已提交
256 257
  }

Y
Yu Yang 已提交
258
  static std::shared_ptr<OperatorBase> CreateOp(const OpDesc& op_desc) {
Y
Yu Yang 已提交
259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274
    std::vector<std::string> inputs;
    inputs.reserve((size_t)op_desc.inputs_size());
    std::copy(op_desc.inputs().begin(), op_desc.inputs().end(),
              std::back_inserter(inputs));

    std::vector<std::string> outputs;
    outputs.reserve((size_t)op_desc.outputs_size());
    std::copy(op_desc.outputs().begin(), op_desc.outputs().end(),
              std::back_inserter(outputs));

    AttributeMap attrs;
    for (auto& attr : op_desc.attrs()) {
      attrs[attr.name()] = AttrTypeHelper::GetAttrValue(attr);
    }

    return CreateOp(op_desc.type(), inputs, outputs, attrs);
275 276
  }

Y
Yu Yang 已提交
277 278 279 280 281
  static std::unordered_map<std::string, OpProto>& protos() {
    static std::unordered_map<std::string, OpProto> protos_;
    return protos_;
  };

282
 private:
Y
Yu Yang 已提交
283 284 285 286 287 288
  static std::unordered_map<std::string, std::shared_ptr<VarIndexMap>>&
  VarIndexMaps() {
    static std::unordered_map<std::string, std::shared_ptr<VarIndexMap>> maps_;
    return maps_;
  }

289
  static void GenerateTempVariableName(OperatorBase* op) {
290 291 292
    static std::atomic<size_t> gUniqId(0UL);
    for (auto& outname : op->outputs_) {
      if (outname == OperatorBase::TMP_VAR_NAME()) {
293
        outname += op->type_;
294 295 296 297 298 299
        outname += "@";
        outname += std::to_string(gUniqId.fetch_add(1));
      }
    }
  }

300 301 302 303
  static std::unordered_map<std::string, OpCreator>& creators() {
    static std::unordered_map<std::string, OpCreator> creators_;
    return creators_;
  }
304

305 306 307 308 309
  static std::unordered_map<std::string, OpAttrChecker>& op_checkers() {
    static std::unordered_map<std::string, OpAttrChecker> op_checkers_;
    return op_checkers_;
  };
};
310 311 312 313

template <typename OpType, typename ProtoMakerType>
class OpRegisterHelper {
 public:
Y
Yu Yang 已提交
314
  OpRegisterHelper(const char* op_type) {
315 316 317 318
    OpRegistry::RegisterOp<OpType, ProtoMakerType>(op_type);
  }
};

319 320 321
/**
 * check if MACRO is used in GLOBAL NAMESPACE.
 */
Y
Yu Yang 已提交
322 323 324 325 326 327
#define STATIC_ASSERT_GLOBAL_NAMESPACE(uniq_name, msg)                        \
  struct __test_global_namespace_##uniq_name##__ {};                          \
  static_assert(std::is_same<::__test_global_namespace_##uniq_name##__,       \
                             __test_global_namespace_##uniq_name##__>::value, \
                msg)

328 329 330
/**
 * Macro to Register Operator.
 */
Y
Yu Yang 已提交
331 332 333 334 335 336 337
#define REGISTER_OP(__op_type, __op_class, __op_maker_class)                 \
  STATIC_ASSERT_GLOBAL_NAMESPACE(__reg_op__##__op_type,                      \
                                 "REGISTER_OP must be in global namespace"); \
  static ::paddle::framework::OpRegisterHelper<__op_class, __op_maker_class> \
      __op_register_##__op_type##__(#__op_type);                             \
  int __op_register_##__op_type##_handle__() { return 0; }

338 339 340
/**
 * Macro to Register OperatorKernel.
 */
341
#define REGISTER_OP_KERNEL(type, DEVICE_TYPE, PlaceType, ...)             \
Y
Yu Yang 已提交
342
  STATIC_ASSERT_GLOBAL_NAMESPACE(                                         \
343
      __reg_op_kernel_##type##_##DEVICE_TYPE##__,                         \
Y
Yu Yang 已提交
344 345 346 347 348 349
      "REGISTER_OP_KERNEL must be in global namespace");                  \
  struct __op_kernel_register__##type##__ {                               \
    __op_kernel_register__##type##__() {                                  \
      ::paddle::framework::OperatorWithKernel::OpKernelKey key;           \
      key.place_ = PlaceType();                                           \
      ::paddle::framework::OperatorWithKernel::AllOpKernels()[#type][key] \
350
          .reset(new __VA_ARGS__());                                      \
Y
Yu Yang 已提交
351 352 353
    }                                                                     \
  };                                                                      \
  static __op_kernel_register__##type##__ __reg_kernel_##type##__;        \
354
  int __op_kernel_register_##type##_handle_##DEVICE_TYPE##__() { return 0; }
Y
Yu Yang 已提交
355

356 357 358
// (type, KernelType)
#define REGISTER_OP_GPU_KERNEL(type, ...) \
  REGISTER_OP_KERNEL(type, GPU, ::paddle::platform::GPUPlace, __VA_ARGS__)
Y
Yu Yang 已提交
359

360 361 362
// (type, KernelType)
#define REGISTER_OP_CPU_KERNEL(type, ...) \
  REGISTER_OP_KERNEL(type, CPU, ::paddle::platform::CPUPlace, __VA_ARGS__)
Y
Yu Yang 已提交
363

364 365 366 367
/**
 * Macro to mark what Operator and Kernel we will use and tell the compiler to
 * link them into target.
 */
Y
Yu Yang 已提交
368 369 370 371 372 373 374 375
#define USE_OP_WITHOUT_KERNEL(op_type)                      \
  STATIC_ASSERT_GLOBAL_NAMESPACE(                           \
      __use_op_without_kernel_##op_type,                    \
      "USE_OP_WITHOUT_KERNEL must be in global namespace"); \
  extern int __op_register_##op_type##_handle__();          \
  static int __use_op_ptr_##op_type##_without_kernel__      \
      __attribute__((unused)) = __op_register_##op_type##_handle__()

Y
Yu Yang 已提交
376 377 378 379 380 381 382 383
#define USE_OP_KERNEL(op_type, DEVICE_TYPE)                               \
  STATIC_ASSERT_GLOBAL_NAMESPACE(                                         \
      __use_op_kernel_##op_type##_##DEVICE_TYPE##__,                      \
      "USE_OP_KERNEL must be in global namespace");                       \
  extern int __op_kernel_register_##op_type##_handle_##DEVICE_TYPE##__(); \
  static int __use_op_ptr_##op_type##_##DEVICE_TYPE##_kernel__            \
      __attribute__((unused)) =                                           \
          __op_kernel_register_##op_type##_handle_##DEVICE_TYPE##__()
Y
Yu Yang 已提交
384

385 386
// use Operator with only cpu kernel.
#define USE_OP_CPU(op_type)       \
Y
Yu Yang 已提交
387
  USE_OP_WITHOUT_KERNEL(op_type); \
388
  USE_OP_KERNEL(op_type, CPU)
Y
Yu Yang 已提交
389

390 391
#ifdef PADDLE_ONLY_CPU
#define USE_OP(op_type) USE_OP_CPU(op_type)
Y
Yu Yang 已提交
392
#else
393 394
#define USE_OP(op_type) \
  USE_OP_CPU(op_type);  \
Y
Yu Yang 已提交
395 396
  USE_OP_KERNEL(op_type, GPU)
#endif
397 398 399

}  // namespace framework
}  // namespace paddle