train.py 11.4 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

import os
import sys
import time
import numpy as np
import datetime
from collections import deque
25
import shutil
26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45

from paddle import fluid

from ppdet.core.workspace import load_config, merge_config, create
from ppdet.data.reader import create_reader

from ppdet.utils.cli import print_total_cfg
from ppdet.utils import dist_utils
from ppdet.utils.eval_utils import parse_fetches, eval_run, eval_results
from ppdet.utils.stats import TrainingStats
from ppdet.utils.cli import ArgsParser
from ppdet.utils.check import check_gpu, check_version
import ppdet.utils.checkpoint as checkpoint
from paddleslim.quant import quant_aware, convert
import logging
FORMAT = '%(asctime)s-%(levelname)s: %(message)s'
logging.basicConfig(level=logging.INFO, format=FORMAT)
logger = logging.getLogger(__name__)


46 47 48 49 50 51 52 53 54 55 56 57 58 59 60
def save_checkpoint(exe, prog, path, train_prog):
    if os.path.isdir(path):
        shutil.rmtree(path)
    logger.info('Save model to {}.'.format(path))
    fluid.io.save_persistables(exe, path, main_program=prog)

    v = train_prog.global_block().var('@LR_DECAY_COUNTER@')
    fluid.io.save_vars(exe, dirname=path, vars=[v])


def load_global_step(exe, prog, path):
    v = prog.global_block().var('@LR_DECAY_COUNTER@')
    fluid.io.load_vars(exe, path, prog, [v])


61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184
def main():
    env = os.environ
    FLAGS.dist = 'PADDLE_TRAINER_ID' in env and 'PADDLE_TRAINERS_NUM' in env
    if FLAGS.dist:
        trainer_id = int(env['PADDLE_TRAINER_ID'])
        import random
        local_seed = (99 + trainer_id)
        random.seed(local_seed)
        np.random.seed(local_seed)

    cfg = load_config(FLAGS.config)
    if 'architecture' in cfg:
        main_arch = cfg.architecture
    else:
        raise ValueError("'architecture' not specified in config file.")

    merge_config(FLAGS.opt)

    if 'log_iter' not in cfg:
        cfg.log_iter = 20

    # check if set use_gpu=True in paddlepaddle cpu version
    check_gpu(cfg.use_gpu)
    # check if paddlepaddle version is satisfied
    check_version()
    if not FLAGS.dist or trainer_id == 0:
        print_total_cfg(cfg)

    if cfg.use_gpu:
        devices_num = fluid.core.get_cuda_device_count()
    else:
        devices_num = int(os.environ.get('CPU_NUM', 1))

    if 'FLAGS_selected_gpus' in env:
        device_id = int(env['FLAGS_selected_gpus'])
    else:
        device_id = 0
    place = fluid.CUDAPlace(device_id) if cfg.use_gpu else fluid.CPUPlace()
    exe = fluid.Executor(place)

    lr_builder = create('LearningRate')
    optim_builder = create('OptimizerBuilder')

    # build program
    startup_prog = fluid.Program()
    train_prog = fluid.Program()
    with fluid.program_guard(train_prog, startup_prog):
        with fluid.unique_name.guard():
            model = create(main_arch)

            inputs_def = cfg['TrainReader']['inputs_def']
            feed_vars, train_loader = model.build_inputs(**inputs_def)
            train_fetches = model.train(feed_vars)
            loss = train_fetches['loss']
            lr = lr_builder()
            optimizer = optim_builder(lr)
            optimizer.minimize(loss)

    # parse train fetches
    train_keys, train_values, _ = parse_fetches(train_fetches)
    train_values.append(lr)

    if FLAGS.eval:
        eval_prog = fluid.Program()
        with fluid.program_guard(eval_prog, startup_prog):
            with fluid.unique_name.guard():
                model = create(main_arch)
                inputs_def = cfg['EvalReader']['inputs_def']
                feed_vars, eval_loader = model.build_inputs(**inputs_def)
                fetches = model.eval(feed_vars)
        eval_prog = eval_prog.clone(True)

        eval_reader = create_reader(cfg.EvalReader)
        eval_loader.set_sample_list_generator(eval_reader, place)

        # parse eval fetches
        extra_keys = []
        if cfg.metric == 'COCO':
            extra_keys = ['im_info', 'im_id', 'im_shape']
        if cfg.metric == 'VOC':
            extra_keys = ['gt_bbox', 'gt_class', 'is_difficult']
        if cfg.metric == 'WIDERFACE':
            extra_keys = ['im_id', 'im_shape', 'gt_bbox']
        eval_keys, eval_values, eval_cls = parse_fetches(fetches, eval_prog,
                                                         extra_keys)

    # compile program for multi-devices
    build_strategy = fluid.BuildStrategy()
    build_strategy.fuse_all_optimizer_ops = False
    build_strategy.fuse_elewise_add_act_ops = True
    build_strategy.fuse_all_reduce_ops = False

    # only enable sync_bn in multi GPU devices
    sync_bn = getattr(model.backbone, 'norm_type', None) == 'sync_bn'
    sync_bn = False
    build_strategy.sync_batch_norm = sync_bn and devices_num > 1 \
        and cfg.use_gpu

    exec_strategy = fluid.ExecutionStrategy()
    # iteration number when CompiledProgram tries to drop local execution scopes.
    # Set it to be 1 to save memory usages, so that unused variables in
    # local execution scopes can be deleted after each iteration.
    exec_strategy.num_iteration_per_drop_scope = 1
    if FLAGS.dist:
        dist_utils.prepare_for_multi_process(exe, build_strategy, startup_prog,
                                             train_prog)
        exec_strategy.num_threads = 1

    exe.run(startup_prog)
    not_quant_pattern = []
    if FLAGS.not_quant_pattern:
        not_quant_pattern = FLAGS.not_quant_pattern
    config = {
        'weight_quantize_type': 'channel_wise_abs_max',
        'activation_quantize_type': 'moving_average_abs_max',
        'quantize_op_types': ['depthwise_conv2d', 'mul', 'conv2d'],
        'not_quant_pattern': not_quant_pattern
    }

    ignore_params = cfg.finetune_exclude_pretrained_params \
                 if 'finetune_exclude_pretrained_params' in cfg else []

    fuse_bn = getattr(model.backbone, 'norm_type', None) == 'affine_channel'

L
Liufang Sang 已提交
185 186 187 188 189 190 191 192 193
    if not FLAGS.resume_checkpoint:
        if cfg.pretrain_weights and fuse_bn and not ignore_params:
            checkpoint.load_and_fusebn(exe, train_prog, cfg.pretrain_weights)
        elif cfg.pretrain_weights:
            checkpoint.load_params(
                exe,
                train_prog,
                cfg.pretrain_weights,
                ignore_params=ignore_params)
194
    # insert quantize op in train_prog, return type is CompiledProgram
195
    train_prog_quant = quant_aware(train_prog, place, config, for_test=False)
196

197
    compiled_train_prog = train_prog_quant.with_data_parallel(
198 199 200 201 202 203 204 205 206 207 208
        loss_name=loss.name,
        build_strategy=build_strategy,
        exec_strategy=exec_strategy)

    if FLAGS.eval:
        # insert quantize op in eval_prog
        eval_prog = quant_aware(eval_prog, place, config, for_test=True)

        compiled_eval_prog = fluid.compiler.CompiledProgram(eval_prog)

    start_iter = 0
L
Liufang Sang 已提交
209 210
    if FLAGS.resume_checkpoint:
        checkpoint.load_checkpoint(exe, eval_prog, FLAGS.resume_checkpoint)
211
        load_global_step(exe, train_prog, FLAGS.resume_checkpoint)
L
Liufang Sang 已提交
212
        start_iter = checkpoint.global_step()
213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256

    train_reader = create_reader(cfg.TrainReader,
                                 (cfg.max_iters - start_iter) * devices_num)
    train_loader.set_sample_list_generator(train_reader, place)

    # whether output bbox is normalized in model output layer
    is_bbox_normalized = False
    if hasattr(model, 'is_bbox_normalized') and \
            callable(model.is_bbox_normalized):
        is_bbox_normalized = model.is_bbox_normalized()

    # if map_type not set, use default 11point, only use in VOC eval
    map_type = cfg.map_type if 'map_type' in cfg else '11point'

    train_stats = TrainingStats(cfg.log_smooth_window, train_keys)
    train_loader.start()
    start_time = time.time()
    end_time = time.time()

    cfg_name = os.path.basename(FLAGS.config).split('.')[0]
    save_dir = os.path.join(cfg.save_dir, cfg_name)
    time_stat = deque(maxlen=cfg.log_smooth_window)
    best_box_ap_list = [0.0, 0]  #[map, iter]

    for it in range(start_iter, cfg.max_iters):
        start_time = end_time
        end_time = time.time()
        time_stat.append(end_time - start_time)
        time_cost = np.mean(time_stat)
        eta_sec = (cfg.max_iters - it) * time_cost
        eta = str(datetime.timedelta(seconds=int(eta_sec)))
        outs = exe.run(compiled_train_prog, fetch_list=train_values)
        stats = {k: np.array(v).mean() for k, v in zip(train_keys, outs[:-1])}

        train_stats.update(stats)
        logs = train_stats.log()
        if it % cfg.log_iter == 0 and (not FLAGS.dist or trainer_id == 0):
            strs = 'iter: {}, lr: {:.6f}, {}, time: {:.3f}, eta: {}'.format(
                it, np.mean(outs[-1]), logs, time_cost, eta)
            logger.info(strs)

        if (it > 0 and it % cfg.snapshot_iter == 0 or it == cfg.max_iters - 1) \
           and (not FLAGS.dist or trainer_id == 0):
            save_name = str(it) if it != cfg.max_iters - 1 else "model_final"
257 258
            save_checkpoint(exe, eval_prog,
                            os.path.join(save_dir, save_name), train_prog)
259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274

            if FLAGS.eval:
                # evaluation
                results = eval_run(exe, compiled_eval_prog, eval_loader,
                                   eval_keys, eval_values, eval_cls)
                resolution = None
                if 'mask' in results[0]:
                    resolution = model.mask_head.resolution
                box_ap_stats = eval_results(
                    results, cfg.metric, cfg.num_classes, resolution,
                    is_bbox_normalized, FLAGS.output_eval, map_type,
                    cfg['EvalReader']['dataset'])

                if box_ap_stats[0] > best_box_ap_list[0]:
                    best_box_ap_list[0] = box_ap_stats[0]
                    best_box_ap_list[1] = it
275 276 277
                    save_checkpoint(exe, eval_prog,
                                    os.path.join(save_dir, "best_model"),
                                    train_prog)
278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314
                logger.info("Best test box ap: {}, in iter: {}".format(
                    best_box_ap_list[0], best_box_ap_list[1]))

    train_loader.reset()


if __name__ == '__main__':
    parser = ArgsParser()
    parser.add_argument(
        "-r",
        "--resume_checkpoint",
        default=None,
        type=str,
        help="Checkpoint path for resuming training.")
    parser.add_argument(
        "--loss_scale",
        default=8.,
        type=float,
        help="Mixed precision training loss scale.")
    parser.add_argument(
        "--eval",
        action='store_true',
        default=False,
        help="Whether to perform evaluation in train")
    parser.add_argument(
        "--output_eval",
        default=None,
        type=str,
        help="Evaluation directory, default is current directory.")
    parser.add_argument(
        "--not_quant_pattern",
        nargs='+',
        type=str,
        help="Layers which name_scope contains string in not_quant_pattern will not be quantized"
    )
    FLAGS = parser.parse_args()
    main()