gan_trainer.py 9.4 KB
Newer Older
X
xuwei06 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
# Copyright (c) 2016 Baidu, Inc. All Rights Reserved
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import argparse
import itertools
import random
import numpy

from paddle.trainer.config_parser import parse_config
from paddle.trainer.config_parser import logger
import py_paddle.swig_paddle as api
from py_paddle import DataProviderConverter

25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41
import matplotlib.pyplot as plt


def plot2DScatter(data, outputfile):
    # Generate some test data
    x = data[:, 0]
    y = data[:, 1]
    print "The mean vector is %s" % numpy.mean(data, 0)
    print "The std vector is %s" % numpy.std(data, 0)

    heatmap, xedges, yedges = numpy.histogram2d(x, y, bins=50)
    extent = [xedges[0], xedges[-1], yedges[0], yedges[-1]]

    plt.clf()
    plt.scatter(x, y)
    # plt.show()
    plt.savefig(outputfile, bbox_inches='tight')
X
xuwei06 已提交
42 43 44 45 46 47 48 49 50 51

def CHECK_EQ(a, b):
    assert a == b, "a=%s, b=%s" % (a, b)


def copy_shared_parameters(src, dst):
    src_params = [src.getParameter(i)
               for i in xrange(src.getParameterSize())]
    src_params = dict([(p.getName(), p) for p in src_params])

52

X
xuwei06 已提交
53 54 55 56 57 58 59 60 61 62
    for i in xrange(dst.getParameterSize()):
        dst_param = dst.getParameter(i)
        src_param = src_params.get(dst_param.getName(), None)
        if src_param is None:
            continue
        src_value = src_param.getBuf(api.PARAMETER_VALUE)
        dst_value = dst_param.getBuf(api.PARAMETER_VALUE)
        CHECK_EQ(len(src_value), len(dst_value))
        dst_value.copyFrom(src_value)
        dst_param.setValueUpdated()
63 64 65 66
        
def print_parameters(src):
    src_params = [src.getParameter(i)
               for i in xrange(src.getParameterSize())]
X
xuwei06 已提交
67

68 69 70 71 72
    print "***************"
    for p in src_params:
        print "Name is %s" % p.getName()
        print "value is %s \n" % p.getBuf(api.PARAMETER_VALUE).copyToNumpyArray()
        
X
xuwei06 已提交
73
def get_real_samples(batch_size, sample_dim):
74 75
    return numpy.random.rand(batch_size, sample_dim).astype('float32') * 10.0 - 10.0
    # return numpy.random.normal(loc=100.0, scale=100.0, size=(batch_size, sample_dim)).astype('float32')
X
xuwei06 已提交
76

77 78
def get_fake_samples(generator_machine, batch_size, noise_dim, sample_dim):
    gen_inputs = prepare_generator_data_batch(batch_size, noise_dim)
X
xuwei06 已提交
79 80 81 82
    gen_inputs.resize(1)
    gen_outputs = api.Arguments.createArguments(0)
    generator_machine.forward(gen_inputs, gen_outputs, api.PASS_TEST)
    fake_samples = gen_outputs.getSlotValue(0).copyToNumpyMat()
83 84 85 86 87 88 89 90 91 92 93
    return fake_samples

def get_training_loss(training_machine, inputs):
    outputs = api.Arguments.createArguments(0)
    training_machine.forward(inputs, outputs, api.PASS_TEST)
    loss = outputs.getSlotValue(0).copyToNumpyMat()
    return numpy.mean(loss)

def prepare_discriminator_data_batch(
        generator_machine, batch_size, noise_dim, sample_dim):
    fake_samples = get_fake_samples(generator_machine, batch_size / 2, noise_dim, sample_dim)
X
xuwei06 已提交
94 95 96 97 98 99 100 101 102 103
    real_samples = get_real_samples(batch_size / 2, sample_dim)
    all_samples = numpy.concatenate((fake_samples, real_samples), 0)
    all_labels = numpy.concatenate(
        (numpy.zeros(batch_size / 2, dtype='int32'),
         numpy.ones(batch_size / 2, dtype='int32')), 0)
    inputs = api.Arguments.createArguments(2)
    inputs.setSlotValue(0, api.Matrix.createCpuDenseFromNumpy(all_samples))
    inputs.setSlotIds(1, api.IVector.createCpuVectorFromNumpy(all_labels))
    return inputs

104 105 106 107 108 109 110 111 112 113 114 115 116 117 118
def prepare_discriminator_data_batch_pos(batch_size, noise_dim, sample_dim):
    real_samples = get_real_samples(batch_size, sample_dim)
    labels = numpy.ones(batch_size, dtype='int32')
    inputs = api.Arguments.createArguments(2)
    inputs.setSlotValue(0, api.Matrix.createCpuDenseFromNumpy(real_samples))
    inputs.setSlotIds(1, api.IVector.createCpuVectorFromNumpy(labels))
    return inputs

def prepare_discriminator_data_batch_neg(generator_machine, batch_size, noise_dim, sample_dim):
    fake_samples = get_fake_samples(generator_machine, batch_size, noise_dim, sample_dim)
    labels = numpy.zeros(batch_size, dtype='int32')
    inputs = api.Arguments.createArguments(2)
    inputs.setSlotValue(0, api.Matrix.createCpuDenseFromNumpy(fake_samples))
    inputs.setSlotIds(1, api.IVector.createCpuVectorFromNumpy(labels))
    return inputs
X
xuwei06 已提交
119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171

def prepare_generator_data_batch(batch_size, dim):
    noise = numpy.random.normal(size=(batch_size, dim)).astype('float32')
    label = numpy.ones(batch_size, dtype='int32')
    inputs = api.Arguments.createArguments(2)
    inputs.setSlotValue(0, api.Matrix.createCpuDenseFromNumpy(noise))
    inputs.setSlotIds(1, api.IVector.createCpuVectorFromNumpy(label))
    return inputs


def find(iterable, cond):
    for item in iterable:
        if cond(item):
            return item
    return None


def get_layer_size(model_conf, layer_name):
    layer_conf = find(model_conf.layers, lambda x: x.name == layer_name)
    assert layer_conf is not None, "Cannot find '%s' layer" % layer_name
    return layer_conf.size


def main():
    api.initPaddle('--use_gpu=0', '--dot_period=100', '--log_period=10000')
    gen_conf = parse_config("gan_conf.py", "mode=generator_training")
    dis_conf = parse_config("gan_conf.py", "mode=discriminator_training")
    generator_conf = parse_config("gan_conf.py", "mode=generator")
    batch_size = dis_conf.opt_config.batch_size
    noise_dim = get_layer_size(gen_conf.model_config, "noise")
    sample_dim = get_layer_size(dis_conf.model_config, "sample")

    # this create a gradient machine for discriminator
    dis_training_machine = api.GradientMachine.createFromConfigProto(
        dis_conf.model_config)

    gen_training_machine = api.GradientMachine.createFromConfigProto(
        gen_conf.model_config)

    # generator_machine is used to generate data only, which is used for
    # training discrinator
    logger.info(str(generator_conf.model_config))
    generator_machine = api.GradientMachine.createFromConfigProto(
        generator_conf.model_config)

    dis_trainer = api.Trainer.create(
        dis_conf, dis_training_machine)

    gen_trainer = api.Trainer.create(
        gen_conf, gen_training_machine)

    dis_trainer.startTrain()
    gen_trainer.startTrain()
172 173 174 175 176 177
    copy_shared_parameters(gen_training_machine, dis_training_machine)
    copy_shared_parameters(gen_training_machine, generator_machine)
    curr_train = "dis"
    curr_strike = 0
    MAX_strike = 5
    
X
xuwei06 已提交
178 179 180 181
    for train_pass in xrange(10):
        dis_trainer.startTrainPass()
        gen_trainer.startTrainPass()
        for i in xrange(100000):
182 183 184 185 186 187 188 189
#             data_batch_dis = prepare_discriminator_data_batch(
#                     generator_machine, batch_size, noise_dim, sample_dim)
#             dis_loss = get_training_loss(dis_training_machine, data_batch_dis)
            data_batch_dis_pos = prepare_discriminator_data_batch_pos(
                batch_size, noise_dim, sample_dim)
            dis_loss_pos = get_training_loss(dis_training_machine, data_batch_dis_pos)
            
            data_batch_dis_neg = prepare_discriminator_data_batch_neg(
X
xuwei06 已提交
190
                generator_machine, batch_size, noise_dim, sample_dim)
191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222
            dis_loss_neg = get_training_loss(dis_training_machine, data_batch_dis_neg)            
            
            dis_loss = (dis_loss_pos + dis_loss_neg) / 2.0
            
            data_batch_gen = prepare_generator_data_batch(
                    batch_size, noise_dim)
            gen_loss = get_training_loss(gen_training_machine, data_batch_gen)
            
            if i % 1000 == 0:
                print "d_loss is %s    g_loss is %s" % (dis_loss, gen_loss)
                            
            if (not (curr_train == "dis" and curr_strike == MAX_strike)) and ((curr_train == "gen" and curr_strike == MAX_strike) or dis_loss > 0.690 or dis_loss > gen_loss):
                if curr_train == "dis":
                    curr_strike += 1
                else:
                    curr_train = "dis"
                    curr_strike = 1                
                dis_trainer.trainOneDataBatch(batch_size, data_batch_dis_neg)
                dis_trainer.trainOneDataBatch(batch_size, data_batch_dis_pos)
#                 dis_loss = numpy.mean(dis_trainer.getForwardOutput()[0]["value"])
#                 print "getForwardOutput loss is %s" % dis_loss                
                copy_shared_parameters(dis_training_machine, gen_training_machine)

            else:
                if curr_train == "gen":
                    curr_strike += 1
                else:
                    curr_train = "gen"
                    curr_strike = 1
                gen_trainer.trainOneDataBatch(batch_size, data_batch_gen)    
                copy_shared_parameters(gen_training_machine, dis_training_machine)
                copy_shared_parameters(gen_training_machine, generator_machine)
X
xuwei06 已提交
223 224 225

        dis_trainer.finishTrainPass()
        gen_trainer.finishTrainPass()
226 227 228

        fake_samples = get_fake_samples(generator_machine, batch_size, noise_dim, sample_dim)
        plot2DScatter(fake_samples, "./train_pass%s.png" % train_pass)
X
xuwei06 已提交
229 230 231 232 233
    dis_trainer.finishTrain()
    gen_trainer.finishTrain()

if __name__ == '__main__':
    main()