elementwise_op.h 4.7 KB
Newer Older
G
gongweibao 已提交
1 2
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.

3 4 5
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
G
gongweibao 已提交
6

7
    http://www.apache.org/licenses/LICENSE-2.0
G
gongweibao 已提交
8

9 10 11 12 13
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
G
gongweibao 已提交
14 15

#pragma once
Y
Yi Wang 已提交
16 17
#include "paddle/fluid/framework/op_registry.h"
#include "paddle/fluid/framework/operator.h"
G
gongweibao 已提交
18 19 20 21 22 23 24 25 26

namespace paddle {
namespace operators {

class ElementwiseOp : public framework::OperatorWithKernel {
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;

  using Tensor = framework::Tensor;
27
  void InferShape(framework::InferShapeContext* ctx) const override {
Q
Qiao Longfei 已提交
28
    PADDLE_ENFORCE(ctx->HasInput("X"),
C
caoying03 已提交
29
                   "Input(X) of elementwise op should not be null.");
Q
Qiao Longfei 已提交
30
    PADDLE_ENFORCE(ctx->HasInput("Y"),
C
caoying03 已提交
31
                   "Input(Y) of elementwise op should not be null.");
Q
Qiao Longfei 已提交
32 33 34 35 36
    PADDLE_ENFORCE(ctx->HasOutput("Out"),
                   "Output(Out) of elementwise op should not be null.");

    auto x_dim = ctx->GetInputDim("X");
    auto y_dim = ctx->GetInputDim("Y");
G
gongweibao 已提交
37
    PADDLE_ENFORCE_GE(x_dim.size(), y_dim.size(),
38
                      "Rank of first input must >= rank of second input.");
Q
Qiao Longfei 已提交
39 40
    ctx->SetOutputDim("Out", x_dim);
    ctx->ShareLoD("X", /*->*/ "Out");
G
gongweibao 已提交
41 42 43 44 45
  }
};

class ElementwiseOpMaker : public framework::OpProtoAndCheckerMaker {
 public:
46
  ElementwiseOpMaker(OpProto* proto, OpAttrChecker* op_checker)
G
gongweibao 已提交
47
      : OpProtoAndCheckerMaker(proto, op_checker) {
C
caoying03 已提交
48 49 50
    AddInput("X", "(Tensor), The first input tensor of elementwise op.");
    AddInput("Y", "(Tensor), The second input tensor of elementwise op.");
    AddOutput("Out", "The output of elementwise op.");
G
gongweibao 已提交
51
    AddAttr<int>("axis",
C
caoying03 已提交
52 53
                 "(int, default -1). The start dimension index "
                 "for broadcasting Y onto X.")
G
gongweibao 已提交
54 55 56
        .SetDefault(-1)
        .EqualGreaterThan(-1);
    comment_ = R"DOC(
K
kexinzhao 已提交
57 58 59 60
Limited Elementwise {name} Operator.

The equation is:

C
caoying03 已提交
61
$${equation}$$
K
kexinzhao 已提交
62

C
caoying03 已提交
63 64
$X$ is a tensor of any dimension and the dimensions of tensor $Y$ must be
smaller than or equal to the dimensions of $X$.
K
kexinzhao 已提交
65 66

There are two cases for this operator:
C
caoying03 已提交
67 68
1. The shape of $Y$ is same with $X$;
2. The shape of $Y$ is a subset of $X$.
K
kexinzhao 已提交
69 70

For case 2:
C
caoying03 已提交
71 72
$Y$ will be broadcasted to match the shape of $X$ and axis should be
set to index of the start dimension to broadcast $Y$ onto $X$.
K
kexinzhao 已提交
73

74 75
For example
  .. code-block:: python
G
gongweibao 已提交
76

77 78 79 80 81 82
    shape(X) = (2, 3, 4, 5), shape(Y) = (,)
    shape(X) = (2, 3, 4, 5), shape(Y) = (5,)
    shape(X) = (2, 3, 4, 5), shape(Y) = (4, 5)
    shape(X) = (2, 3, 4, 5), shape(Y) = (3, 4), with axis=1
    shape(X) = (2, 3, 4, 5), shape(Y) = (2), with axis=0

C
caoying03 已提交
83 84
Either of the inputs $X$ and $Y$ or none can carry the LoD (Level of Details)
information. However, the output only shares the LoD information with input $X$.
K
kexinzhao 已提交
85

G
gongweibao 已提交
86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112
)DOC";
    AddComment(comment_);
  }

 protected:
  std::string comment_;

  void Replace(std::string& src, std::string from, std::string to) {
    std::size_t len_from = std::strlen(from.c_str());
    std::size_t len_to = std::strlen(to.c_str());
    for (std::size_t pos = src.find(from); pos != std::string::npos;
         pos = src.find(from, pos + len_to)) {
      src.replace(pos, len_from, to);
    }
  }

  void SetComment(std::string name, std::string equation) {
    Replace(comment_, "{name}", name);
    Replace(comment_, "{equation}", equation);
  }
};

class ElementwiseOpGrad : public framework::OperatorWithKernel {
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;
  using Tensor = framework::Tensor;

113
  void InferShape(framework::InferShapeContext* ctx) const override {
Q
Qiao Longfei 已提交
114 115 116 117 118 119 120 121
    PADDLE_ENFORCE(ctx->HasInput("X"), "Input(X) should not be null");
    PADDLE_ENFORCE(ctx->HasInput("Y"), "Input(Y) should not be null");
    PADDLE_ENFORCE(ctx->HasInput(framework::GradVarName("Out")),
                   "Input(Out@GRAD) should not be null");

    auto x_dims = ctx->GetInputDim("X");
    auto y_dims = ctx->GetInputDim("Y");
    auto out_dims = ctx->GetInputDim(framework::GradVarName("Out"));
G
gongweibao 已提交
122 123

    PADDLE_ENFORCE_GE(x_dims.size(), y_dims.size(),
124
                      "Rank of first input must >= rank of second input.");
G
gongweibao 已提交
125

Q
Qiao Longfei 已提交
126 127 128 129
    auto x_grad_name = framework::GradVarName("X");
    auto y_grad_name = framework::GradVarName("Y");
    if (ctx->HasOutput(x_grad_name)) {
      ctx->SetOutputDim(x_grad_name, x_dims);
G
gongweibao 已提交
130
    }
Q
Qiao Longfei 已提交
131 132
    if (ctx->HasOutput(y_grad_name)) {
      ctx->SetOutputDim(y_grad_name, y_dims);
G
gongweibao 已提交
133 134 135 136 137
    }
  }
};
}  // namespace operators
}  // namespace paddle