jde_embedding_head.py 7.2 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved. 
#   
# Licensed under the Apache License, Version 2.0 (the "License");   
# you may not use this file except in compliance with the License.  
# You may obtain a copy of the License at   
#   
#     http://www.apache.org/licenses/LICENSE-2.0    
#   
# Unless required by applicable law or agreed to in writing, software   
# distributed under the License is distributed on an "AS IS" BASIS, 
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.  
# See the License for the specific language governing permissions and   
# limitations under the License.

from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

import math
import paddle
import paddle.nn as nn
import paddle.nn.functional as F
from paddle import ParamAttr
from paddle.regularizer import L2Decay
from ppdet.core.workspace import register
from paddle.nn.initializer import Normal, Constant

__all__ = ['JDEEmbeddingHead']


class LossParam(nn.Layer):
    def __init__(self, init_value=0., use_uncertainy=True):
        super(LossParam, self).__init__()
        self.loss_param = self.create_parameter(
            shape=[1],
            attr=ParamAttr(initializer=Constant(value=init_value)),
            dtype="float32")

    def forward(self, inputs):
        out = paddle.exp(-self.loss_param) * inputs + self.loss_param
        return out * 0.5


@register
class JDEEmbeddingHead(nn.Layer):
    __shared__ = ['num_classes']
    __inject__ = ['emb_loss', 'jde_loss']
    """
    JDEEmbeddingHead
    Args:
        num_classes(int): Number of classes. Only support one class tracking.
        num_identifiers(int): Number of identifiers.
        anchor_levels(int): Number of anchor levels, same as FPN levels.
        anchor_scales(int): Number of anchor scales on each FPN level.
        embedding_dim(int): Embedding dimension. Default: 512.
        emb_loss(object): Instance of 'JDEEmbeddingLoss'
        jde_loss(object): Instance of 'JDELoss'
    """

    def __init__(
            self,
            num_classes=1,
63
            num_identifiers=14455,  # defined by dataset.total_identities when training
64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187
            anchor_levels=3,
            anchor_scales=4,
            embedding_dim=512,
            emb_loss='JDEEmbeddingLoss',
            jde_loss='JDELoss'):
        super(JDEEmbeddingHead, self).__init__()
        self.num_classes = num_classes
        self.num_identifiers = num_identifiers
        self.anchor_levels = anchor_levels
        self.anchor_scales = anchor_scales
        self.embedding_dim = embedding_dim
        self.emb_loss = emb_loss
        self.jde_loss = jde_loss

        self.emb_scale = math.sqrt(2) * math.log(
            self.num_identifiers - 1) if self.num_identifiers > 1 else 1

        self.identify_outputs = []
        self.loss_params_cls = []
        self.loss_params_reg = []
        self.loss_params_ide = []
        for i in range(self.anchor_levels):
            name = 'identify_output.{}'.format(i)
            identify_output = self.add_sublayer(
                name,
                nn.Conv2D(
                    in_channels=64 * (2**self.anchor_levels) // (2**i),
                    out_channels=self.embedding_dim,
                    kernel_size=3,
                    stride=1,
                    padding=1,
                    weight_attr=ParamAttr(name=name + '.conv.weights'),
                    bias_attr=ParamAttr(
                        name=name + '.conv.bias', regularizer=L2Decay(0.))))
            self.identify_outputs.append(identify_output)

            loss_p_cls = self.add_sublayer('cls.{}'.format(i), LossParam(-4.15))
            self.loss_params_cls.append(loss_p_cls)
            loss_p_reg = self.add_sublayer('reg.{}'.format(i), LossParam(-4.85))
            self.loss_params_reg.append(loss_p_reg)
            loss_p_ide = self.add_sublayer('ide.{}'.format(i), LossParam(-2.3))
            self.loss_params_ide.append(loss_p_ide)

        self.classifier = self.add_sublayer(
            'classifier',
            nn.Linear(
                self.embedding_dim,
                self.num_identifiers,
                weight_attr=ParamAttr(
                    learning_rate=1., initializer=Normal(
                        mean=0.0, std=0.01)),
                bias_attr=ParamAttr(
                    learning_rate=2., regularizer=L2Decay(0.))))

    def forward(self,
                identify_feats,
                targets=None,
                loss_confs=None,
                loss_boxes=None,
                test_emb=False):
        assert len(identify_feats) == self.anchor_levels
        ide_outs = []
        for feat, ide_head in zip(identify_feats, self.identify_outputs):
            ide_outs.append(ide_head(feat))

        if self.training:
            assert targets != None
            assert len(loss_confs) == len(loss_boxes) == self.anchor_levels
            loss_ides = self.emb_loss(ide_outs, targets, self.emb_scale,
                                      self.classifier)
            return self.jde_loss(loss_confs, loss_boxes, loss_ides,
                                 self.loss_params_cls, self.loss_params_reg,
                                 self.loss_params_ide, targets)
        else:
            if test_emb:
                assert targets != None
                embs_and_gts = self.get_emb_and_gt_outs(ide_outs, targets)
                return embs_and_gts
            else:
                emb_outs = self.get_emb_outs(ide_outs)
                return emb_outs

    def get_emb_and_gt_outs(self, ide_outs, targets):
        emb_and_gts = []
        for i, p_ide in enumerate(ide_outs):
            t_conf = targets['tconf{}'.format(i)]
            t_ide = targets['tide{}'.format(i)]

            p_ide = p_ide.transpose((0, 2, 3, 1))
            p_ide_flatten = paddle.reshape(p_ide, [-1, self.embedding_dim])

            mask = t_conf > 0
            mask = paddle.cast(mask, dtype="int64")
            emb_mask = mask.max(1).flatten()
            emb_mask_inds = paddle.nonzero(emb_mask > 0).flatten()
            if len(emb_mask_inds) > 0:
                t_ide_flatten = paddle.reshape(t_ide.max(1), [-1, 1])
                tids = paddle.gather(t_ide_flatten, emb_mask_inds)

                embedding = paddle.gather(p_ide_flatten, emb_mask_inds)
                embedding = self.emb_scale * F.normalize(embedding)
                emb_and_gt = paddle.concat([embedding, tids], axis=1)
                emb_and_gts.append(emb_and_gt)

        if len(emb_and_gts) > 0:
            return paddle.concat(emb_and_gts, axis=0)
        else:
            return paddle.zeros((1, self.embedding_dim + 1))

    def get_emb_outs(self, ide_outs):
        emb_outs = []
        for i, p_ide in enumerate(ide_outs):
            p_ide = p_ide.transpose((0, 2, 3, 1))

            p_ide_repeat = paddle.tile(
                p_ide.unsqueeze(axis=0), [1, self.anchor_scales, 1, 1, 1])
            embedding = F.normalize(p_ide_repeat, axis=-1)
            emb = paddle.reshape(embedding, [-1, self.embedding_dim])
            emb_outs.append(emb)

        if len(emb_outs) > 0:
            return paddle.concat(emb_outs, axis=0)
        else:
            return paddle.zeros((1, self.embedding_dim))