trainer_ssod.py 20.4 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193
# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

import os
import sys
import copy
import time
import typing
import math
import numpy as np

import paddle
import paddle.nn as nn
import paddle.distributed as dist
from paddle.distributed import fleet
from ppdet.optimizer import ModelEMA, SimpleModelEMA

from ppdet.core.workspace import create
from ppdet.utils.checkpoint import load_weight, load_pretrain_weight
import ppdet.utils.stats as stats
from ppdet.utils import profiler
from ppdet.modeling.ssod_utils import align_weak_strong_shape
from .trainer import Trainer

from ppdet.utils.logger import setup_logger
logger = setup_logger('ppdet.engine')

__all__ = ['Trainer_DenseTeacher']


class Trainer_DenseTeacher(Trainer):
    def __init__(self, cfg, mode='train'):
        self.cfg = cfg
        assert mode.lower() in ['train', 'eval', 'test'], \
                "mode should be 'train', 'eval' or 'test'"
        self.mode = mode.lower()
        self.optimizer = None
        self.is_loaded_weights = False
        self.use_amp = self.cfg.get('amp', False)
        self.amp_level = self.cfg.get('amp_level', 'O1')
        self.custom_white_list = self.cfg.get('custom_white_list', None)
        self.custom_black_list = self.cfg.get('custom_black_list', None)

        # build data loader
        capital_mode = self.mode.capitalize()
        self.dataset = self.cfg['{}Dataset'.format(capital_mode)] = create(
            '{}Dataset'.format(capital_mode))()

        if self.mode == 'train':
            self.dataset_unlabel = self.cfg['UnsupTrainDataset'] = create(
                'UnsupTrainDataset')
            self.loader = create('SemiTrainReader')(
                self.dataset, self.dataset_unlabel, cfg.worker_num)

        # build model
        if 'model' not in self.cfg:
            self.model = create(cfg.architecture)
        else:
            self.model = self.cfg.model
            self.is_loaded_weights = True

        # EvalDataset build with BatchSampler to evaluate in single device
        # TODO: multi-device evaluate
        if self.mode == 'eval':
            self._eval_batch_sampler = paddle.io.BatchSampler(
                self.dataset, batch_size=self.cfg.EvalReader['batch_size'])
            # If metric is VOC, need to be set collate_batch=False.
            if cfg.metric == 'VOC':
                cfg['EvalReader']['collate_batch'] = False
            self.loader = create('EvalReader')(self.dataset, cfg.worker_num,
                                               self._eval_batch_sampler)
        # TestDataset build after user set images, skip loader creation here

        # build optimizer in train mode
        if self.mode == 'train':
            steps_per_epoch = len(self.loader)
            if steps_per_epoch < 1:
                logger.warning(
                    "Samples in dataset are less than batch_size, please set smaller batch_size in TrainReader."
                )
            self.lr = create('LearningRate')(steps_per_epoch)
            self.optimizer = create('OptimizerBuilder')(self.lr, self.model)

            # Unstructured pruner is only enabled in the train mode.
            if self.cfg.get('unstructured_prune'):
                self.pruner = create('UnstructuredPruner')(self.model,
                                                           steps_per_epoch)
        if self.use_amp and self.amp_level == 'O2':
            self.model, self.optimizer = paddle.amp.decorate(
                models=self.model,
                optimizers=self.optimizer,
                level=self.amp_level)

        self.use_ema = ('use_ema' in cfg and cfg['use_ema'])
        if self.use_ema:
            ema_decay = self.cfg.get('ema_decay', 0.9998)
            ema_decay_type = self.cfg.get('ema_decay_type', 'threshold')
            cycle_epoch = self.cfg.get('cycle_epoch', -1)
            ema_black_list = self.cfg.get('ema_black_list', None)
            self.ema = ModelEMA(
                self.model,
                decay=ema_decay,
                ema_decay_type=ema_decay_type,
                cycle_epoch=cycle_epoch,
                ema_black_list=ema_black_list)
            self.ema_start_iters = self.cfg.get('ema_start_iters', 0)

        # simple_ema for SSOD
        self.use_simple_ema = ('use_simple_ema' in cfg and
                               cfg['use_simple_ema'])
        if self.use_simple_ema:
            self.use_ema = True
            ema_decay = self.cfg.get('ema_decay', 0.9996)
            self.ema = SimpleModelEMA(self.model, decay=ema_decay)
            self.ema_start_iters = self.cfg.get('ema_start_iters', 0)

        self._nranks = dist.get_world_size()
        self._local_rank = dist.get_rank()

        self.status = {}

        self.start_epoch = 0
        self.end_epoch = 0 if 'epoch' not in cfg else cfg.epoch

        # initial default callbacks
        self._init_callbacks()

        # initial default metrics
        self._init_metrics()
        self._reset_metrics()

    def load_weights(self, weights):
        if self.is_loaded_weights:
            return
        self.start_epoch = 0
        load_pretrain_weight(self.model, weights)
        load_pretrain_weight(self.ema.model, weights)
        logger.info("Load weights {} to start training for teacher and student".
                    format(weights))

    def resume_weights(self, weights, exchange=True):
        # support Distill resume weights
        if hasattr(self.model, 'student_model'):
            self.start_epoch = load_weight(self.model.student_model, weights,
                                           self.optimizer, exchange)
        else:
            self.start_epoch = load_weight(self.model, weights, self.optimizer,
                                           self.ema
                                           if self.use_ema else None, exchange)
        logger.debug("Resume weights of epoch {}".format(self.start_epoch))

    def train(self, validate=False):
        self.semi_start_iters = self.cfg.get('semi_start_iters', 5000)
        Init_mark = False
        if validate:
            self.cfg['EvalDataset'] = self.cfg.EvalDataset = create(
                "EvalDataset")()

        sync_bn = (getattr(self.cfg, 'norm_type', None) == 'sync_bn' and
                   self.cfg.use_gpu and self._nranks > 1)
        if sync_bn:
            self.model = paddle.nn.SyncBatchNorm.convert_sync_batchnorm(
                self.model)

        if self.cfg.get('fleet', False):
            self.model = fleet.distributed_model(self.model)
            self.optimizer = fleet.distributed_optimizer(self.optimizer)
        elif self._nranks > 1:
            find_unused_parameters = self.cfg[
                'find_unused_parameters'] if 'find_unused_parameters' in self.cfg else False
            self.model = paddle.DataParallel(
                self.model, find_unused_parameters=find_unused_parameters)
            self.ema.model = paddle.DataParallel(
                self.ema.model, find_unused_parameters=find_unused_parameters)

        self.status.update({
            'epoch_id': self.start_epoch,
            'step_id': 0,
194 195
            'steps_per_epoch': len(self.loader),
            'exchange_save_model': True,
196
        })
197 198
        # Note: exchange_save_model
        # in DenseTeacher SSOD, the teacher model will be higher, so exchange when saving pdparams
199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259

        self.status['batch_time'] = stats.SmoothedValue(
            self.cfg.log_iter, fmt='{avg:.4f}')
        self.status['data_time'] = stats.SmoothedValue(
            self.cfg.log_iter, fmt='{avg:.4f}')
        self.status['training_staus'] = stats.TrainingStats(self.cfg.log_iter)

        if self.cfg.get('print_flops', False):
            flops_loader = create('{}Reader'.format(self.mode.capitalize()))(
                self.dataset, self.cfg.worker_num)
            self._flops(flops_loader)
        profiler_options = self.cfg.get('profiler_options', None)
        self._compose_callback.on_train_begin(self.status)

        train_cfg = self.cfg.DenseTeacher['train_cfg']
        concat_sup_data = train_cfg.get('concat_sup_data', True)

        for param in self.ema.model.parameters():
            param.stop_gradient = True

        for epoch_id in range(self.start_epoch, self.cfg.epoch):
            self.status['mode'] = 'train'
            self.status['epoch_id'] = epoch_id
            self._compose_callback.on_epoch_begin(self.status)
            self.loader.dataset_label.set_epoch(epoch_id)
            self.loader.dataset_unlabel.set_epoch(epoch_id)
            iter_tic = time.time()
            loss_dict = {
                'loss': paddle.to_tensor([0]),
                'loss_sup_sum': paddle.to_tensor([0]),
                'loss_unsup_sum': paddle.to_tensor([0]),
                'fg_sum': paddle.to_tensor([0]),
            }
            if self._nranks > 1:
                for k in self.model._layers.get_loss_keys():
                    loss_dict.update({k: paddle.to_tensor([0.])})
                for k in self.model._layers.get_loss_keys():
                    loss_dict.update({'distill_' + k: paddle.to_tensor([0.])})
            else:
                for k in self.model.get_loss_keys():
                    loss_dict.update({k: paddle.to_tensor([0.])})
                for k in self.model.get_loss_keys():
                    loss_dict.update({'distill_' + k: paddle.to_tensor([0.])})

            # Note: for step_id, data in enumerate(self.loader): # enumerate bug
            for step_id in range(len(self.loader)):
                data = next(self.loader)

                self.model.train()
                self.ema.model.eval()
                data_sup_w, data_sup_s, data_unsup_w, data_unsup_s = data

                self.status['data_time'].update(time.time() - iter_tic)
                self.status['step_id'] = step_id
                profiler.add_profiler_step(profiler_options)
                self._compose_callback.on_step_begin(self.status)

                if data_sup_w['image'].shape != data_sup_s['image'].shape:
                    data_sup_w, data_sup_s = align_weak_strong_shape(data_sup_w,
                                                                     data_sup_s)

260 261
                data_sup_w['epoch_id'] = epoch_id
                data_sup_s['epoch_id'] = epoch_id
262 263
                if concat_sup_data:
                    for k, v in data_sup_s.items():
264 265
                        if k in ['epoch_id']:
                            continue
266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480
                        data_sup_s[k] = paddle.concat([v, data_sup_w[k]])
                    loss_dict_sup = self.model(data_sup_s)
                else:
                    loss_dict_sup_w = self.model(data_sup_w)
                    loss_dict_sup = self.model(data_sup_s)
                    for k, v in loss_dict_sup_w.items():
                        loss_dict_sup[k] = (loss_dict_sup[k] + v) * 0.5

                losses_sup = loss_dict_sup['loss'] * train_cfg['sup_weight']
                losses_sup.backward()

                losses = losses_sup.detach()
                loss_dict.update(loss_dict_sup)
                loss_dict.update({'loss_sup_sum': loss_dict['loss']})

                curr_iter = len(self.loader) * epoch_id + step_id
                st_iter = self.semi_start_iters
                if curr_iter == st_iter:
                    logger.info("***" * 30)
                    logger.info('Semi starting ...')
                    logger.info("***" * 30)
                if curr_iter > st_iter:
                    unsup_weight = train_cfg['unsup_weight']
                    if train_cfg['suppress'] == 'linear':
                        tar_iter = st_iter * 2
                        if curr_iter <= tar_iter:
                            unsup_weight *= (curr_iter - st_iter) / st_iter
                    elif train_cfg['suppress'] == 'exp':
                        tar_iter = st_iter + 2000
                        if curr_iter <= tar_iter:
                            scale = np.exp((curr_iter - tar_iter) / 1000)
                            unsup_weight *= scale
                    elif train_cfg['suppress'] == 'step':
                        tar_iter = st_iter * 2
                        if curr_iter <= tar_iter:
                            unsup_weight *= 0.25
                    else:
                        raise ValueError

                    if data_unsup_w['image'].shape != data_unsup_s[
                            'image'].shape:
                        data_unsup_w, data_unsup_s = align_weak_strong_shape(
                            data_unsup_w, data_unsup_s)

                    data_unsup_w['epoch_id'] = epoch_id
                    data_unsup_s['epoch_id'] = epoch_id

                    data_unsup_s['get_data'] = True
                    student_preds = self.model(data_unsup_s)

                    with paddle.no_grad():
                        data_unsup_w['is_teacher'] = True
                        teacher_preds = self.ema.model(data_unsup_w)

                    if self._nranks > 1:
                        loss_dict_unsup = self.model._layers.get_distill_loss(
                            student_preds,
                            teacher_preds,
                            ratio=train_cfg['ratio'])
                    else:
                        loss_dict_unsup = self.model.get_distill_loss(
                            student_preds,
                            teacher_preds,
                            ratio=train_cfg['ratio'])

                    fg_num = loss_dict_unsup["fg_sum"]
                    del loss_dict_unsup["fg_sum"]
                    distill_weights = train_cfg['loss_weight']
                    loss_dict_unsup = {
                        k: v * distill_weights[k]
                        for k, v in loss_dict_unsup.items()
                    }

                    losses_unsup = sum([
                        metrics_value
                        for metrics_value in loss_dict_unsup.values()
                    ]) * unsup_weight
                    losses_unsup.backward()

                    loss_dict.update(loss_dict_unsup)
                    loss_dict.update({'loss_unsup_sum': losses_unsup})
                    losses += losses_unsup.detach()
                    loss_dict.update({"fg_sum": fg_num})
                    loss_dict['loss'] = losses

                self.optimizer.step()
                curr_lr = self.optimizer.get_lr()
                self.lr.step()
                self.optimizer.clear_grad()
                self.status['learning_rate'] = curr_lr
                if self._nranks < 2 or self._local_rank == 0:
                    self.status['training_staus'].update(loss_dict)

                self.status['batch_time'].update(time.time() - iter_tic)
                self._compose_callback.on_step_end(self.status)
                # Note: ema_start_iters
                if self.use_ema and curr_iter == self.ema_start_iters:
                    logger.info("***" * 30)
                    logger.info('EMA starting ...')
                    logger.info("***" * 30)
                    self.ema.update(self.model, decay=0)
                elif self.use_ema and curr_iter > self.ema_start_iters:
                    self.ema.update(self.model)
                iter_tic = time.time()

            is_snapshot = (self._nranks < 2 or self._local_rank == 0) \
                       and ((epoch_id + 1) % self.cfg.snapshot_epoch == 0 or epoch_id == self.end_epoch - 1)
            if is_snapshot and self.use_ema:
                # apply ema weight on model
                weight = copy.deepcopy(self.ema.model.state_dict())
                for k, v in weight.items():
                    if paddle.is_floating_point(v):
                        weight[k].stop_gradient = True
                self.status['weight'] = weight

            self._compose_callback.on_epoch_end(self.status)

            if validate and is_snapshot:
                if not hasattr(self, '_eval_loader'):
                    # build evaluation dataset and loader
                    self._eval_dataset = self.cfg.EvalDataset
                    self._eval_batch_sampler = \
                        paddle.io.BatchSampler(
                            self._eval_dataset,
                            batch_size=self.cfg.EvalReader['batch_size'])
                    # If metric is VOC, need to be set collate_batch=False.
                    if self.cfg.metric == 'VOC':
                        self.cfg['EvalReader']['collate_batch'] = False
                    self._eval_loader = create('EvalReader')(
                        self._eval_dataset,
                        self.cfg.worker_num,
                        batch_sampler=self._eval_batch_sampler)
                # if validation in training is enabled, metrics should be re-init
                # Init_mark makes sure this code will only execute once
                if validate and Init_mark == False:
                    Init_mark = True
                    self._init_metrics(validate=validate)
                    self._reset_metrics()

                with paddle.no_grad():
                    self.status['save_best_model'] = True
                    self._eval_with_loader(self._eval_loader)

            if is_snapshot and self.use_ema:
                self.status.pop('weight')

        self._compose_callback.on_train_end(self.status)

    def evaluate(self):
        # get distributed model
        if self.cfg.get('fleet', False):
            self.model = fleet.distributed_model(self.model)
            self.optimizer = fleet.distributed_optimizer(self.optimizer)
        elif self._nranks > 1:
            find_unused_parameters = self.cfg[
                'find_unused_parameters'] if 'find_unused_parameters' in self.cfg else False
            self.model = paddle.DataParallel(
                self.model, find_unused_parameters=find_unused_parameters)
        with paddle.no_grad():
            self._eval_with_loader(self.loader)

    def _eval_with_loader(self, loader):
        sample_num = 0
        tic = time.time()
        self._compose_callback.on_epoch_begin(self.status)
        self.status['mode'] = 'eval'

        test_cfg = self.cfg.DenseTeacher['test_cfg']
        if test_cfg['inference_on'] == 'teacher':
            logger.info("***** teacher model evaluating *****")
            eval_model = self.ema.model
        else:
            logger.info("***** student model evaluating *****")
            eval_model = self.model

        eval_model.eval()
        if self.cfg.get('print_flops', False):
            flops_loader = create('{}Reader'.format(self.mode.capitalize()))(
                self.dataset, self.cfg.worker_num, self._eval_batch_sampler)
            self._flops(flops_loader)
        for step_id, data in enumerate(loader):
            self.status['step_id'] = step_id
            self._compose_callback.on_step_begin(self.status)
            # forward
            if self.use_amp:
                with paddle.amp.auto_cast(
                        enable=self.cfg.use_gpu or self.cfg.use_mlu,
                        custom_white_list=self.custom_white_list,
                        custom_black_list=self.custom_black_list,
                        level=self.amp_level):
                    outs = eval_model(data)
            else:
                outs = eval_model(data)

            # update metrics
            for metric in self._metrics:
                metric.update(data, outs)

            # multi-scale inputs: all inputs have same im_id
            if isinstance(data, typing.Sequence):
                sample_num += data[0]['im_id'].numpy().shape[0]
            else:
                sample_num += data['im_id'].numpy().shape[0]
            self._compose_callback.on_step_end(self.status)

        self.status['sample_num'] = sample_num
        self.status['cost_time'] = time.time() - tic

        # accumulate metric to log out
        for metric in self._metrics:
            metric.accumulate()
            metric.log()
        self._compose_callback.on_epoch_end(self.status)
        # reset metric states for metric may performed multiple times
        self._reset_metrics()