infer.py 5.3 KB
Newer Older
S
shangliang Xu 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161
# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import os
import yaml
import argparse
import numpy as np
import glob
from onnxruntime import InferenceSession

from preprocess import Compose

# Global dictionary
SUPPORT_MODELS = {
    'YOLO',
    'RCNN',
    'SSD',
    'Face',
    'FCOS',
    'SOLOv2',
    'TTFNet',
    'S2ANet',
    'JDE',
    'FairMOT',
    'DeepSORT',
    'GFL',
    'PicoDet',
    'CenterNet',
    'TOOD',
    'RetinaNet',
    'StrongBaseline',
    'STGCN',
    'YOLOX',
}

parser = argparse.ArgumentParser(description=__doc__)
parser.add_argument("-c", "--config", type=str, help="infer_cfg.yml")
parser.add_argument(
    '--onnx_file', type=str, default="model.onnx", help="onnx model file path")
parser.add_argument("--image_dir", type=str)
parser.add_argument("--image_file", type=str)


def get_test_images(infer_dir, infer_img):
    """
    Get image path list in TEST mode
    """
    assert infer_img is not None or infer_dir is not None, \
        "--image_file or --image_dir should be set"
    assert infer_img is None or os.path.isfile(infer_img), \
            "{} is not a file".format(infer_img)
    assert infer_dir is None or os.path.isdir(infer_dir), \
            "{} is not a directory".format(infer_dir)

    # infer_img has a higher priority
    if infer_img and os.path.isfile(infer_img):
        return [infer_img]

    images = set()
    infer_dir = os.path.abspath(infer_dir)
    assert os.path.isdir(infer_dir), \
        "infer_dir {} is not a directory".format(infer_dir)
    exts = ['jpg', 'jpeg', 'png', 'bmp']
    exts += [ext.upper() for ext in exts]
    for ext in exts:
        images.update(glob.glob('{}/*.{}'.format(infer_dir, ext)))
    images = list(images)

    assert len(images) > 0, "no image found in {}".format(infer_dir)
    print("Found {} inference images in total.".format(len(images)))

    return images


class PredictConfig(object):
    """set config of preprocess, postprocess and visualize
    Args:
        model_dir (str): root path of infer_cfg.yml
    """

    def __init__(self, infer_config):
        # parsing Yaml config for Preprocess
        with open(infer_config) as f:
            yml_conf = yaml.safe_load(f)
        self.check_model(yml_conf)
        self.arch = yml_conf['arch']
        self.preprocess_infos = yml_conf['Preprocess']
        self.min_subgraph_size = yml_conf['min_subgraph_size']
        self.label_list = yml_conf['label_list']
        self.use_dynamic_shape = yml_conf['use_dynamic_shape']
        self.draw_threshold = yml_conf.get("draw_threshold", 0.5)
        self.mask = yml_conf.get("mask", False)
        self.tracker = yml_conf.get("tracker", None)
        self.nms = yml_conf.get("NMS", None)
        self.fpn_stride = yml_conf.get("fpn_stride", None)
        if self.arch == 'RCNN' and yml_conf.get('export_onnx', False):
            print(
                'The RCNN export model is used for ONNX and it only supports batch_size = 1'
            )
        self.print_config()

    def check_model(self, yml_conf):
        """
        Raises:
            ValueError: loaded model not in supported model type
        """
        for support_model in SUPPORT_MODELS:
            if support_model in yml_conf['arch']:
                return True
        raise ValueError("Unsupported arch: {}, expect {}".format(yml_conf[
            'arch'], SUPPORT_MODELS))

    def print_config(self):
        print('-----------  Model Configuration -----------')
        print('%s: %s' % ('Model Arch', self.arch))
        print('%s: ' % ('Transform Order'))
        for op_info in self.preprocess_infos:
            print('--%s: %s' % ('transform op', op_info['type']))
        print('--------------------------------------------')


def predict_image(infer_config, predictor, img_list):
    # load preprocess transforms
    transforms = Compose(infer_config.preprocess_infos)
    # predict image
    for img_path in img_list:
        inputs = transforms(img_path)
        inputs_name = [var.name for var in predictor.get_inputs()]
        inputs = {k: inputs[k][None, ] for k in inputs_name}

        outputs = predictor.run(output_names=None, input_feed=inputs)

        print("ONNXRuntime predict: ")
        bboxes = np.array(outputs[0])
        for bbox in bboxes:
            if bbox[0] > -1 and bbox[1] > infer_config.draw_threshold:
                print(f"{infer_config.label_list[int(bbox[0])]} {bbox[1]} "
                      f"{bbox[2]} {bbox[3]} {bbox[4]} {bbox[5]}")


if __name__ == '__main__':
    FLAGS = parser.parse_args()
    # load image list
    img_list = get_test_images(FLAGS.image_dir, FLAGS.image_file)
    # load predictor
    predictor = InferenceSession(FLAGS.onnx_file)
    # load infer config
    infer_config = PredictConfig(FLAGS.config)

    predict_image(infer_config, predictor, img_list)