bbox_head.py 9.2 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94
# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

from collections import OrderedDict

from paddle import fluid
from paddle.fluid.param_attr import ParamAttr
from paddle.fluid.initializer import Normal, Xavier
from paddle.fluid.regularizer import L2Decay

from ppdet.modeling.ops import MultiClassNMS
from ppdet.core.workspace import register, serializable

__all__ = ['BBoxHead', 'TwoFCHead']


@register
@serializable
class BoxCoder(object):
    __op__ = fluid.layers.box_coder
    __append_doc__ = True

    def __init__(self,
                 prior_box_var=[0.1, 0.1, 0.2, 0.2],
                 code_type='decode_center_size',
                 box_normalized=False,
                 axis=1):
        super(BoxCoder, self).__init__()
        self.prior_box_var = prior_box_var
        self.code_type = code_type
        self.box_normalized = box_normalized
        self.axis = axis


@register
class TwoFCHead(object):
    """
    RCNN head with two Fully Connected layers

    Args:
        num_chan (int): num of filters for the fc layers
    """

    def __init__(self, num_chan=1024):
        super(TwoFCHead, self).__init__()
        self.num_chan = num_chan

    def __call__(self, roi_feat):
        fan = roi_feat.shape[1] * roi_feat.shape[2] * roi_feat.shape[3]
        fc6 = fluid.layers.fc(input=roi_feat,
                              size=self.num_chan,
                              act='relu',
                              name='fc6',
                              param_attr=ParamAttr(
                                  name='fc6_w',
                                  initializer=Xavier(fan_out=fan)),
                              bias_attr=ParamAttr(
                                  name='fc6_b',
                                  learning_rate=2.,
                                  regularizer=L2Decay(0.)))
        head_feat = fluid.layers.fc(input=fc6,
                                    size=self.num_chan,
                                    act='relu',
                                    name='fc7',
                                    param_attr=ParamAttr(
                                        name='fc7_w', initializer=Xavier()),
                                    bias_attr=ParamAttr(
                                        name='fc7_b',
                                        learning_rate=2.,
                                        regularizer=L2Decay(0.)))
        return head_feat


@register
class BBoxHead(object):
    """
    RCNN bbox head

    Args:
95
        head (object): the head module instance, e.g., `ResNetC5`, `TwoFCHead`
96 97 98 99 100
        box_coder (object): `BoxCoder` instance
        nms (object): `MultiClassNMS` instance
        num_classes: number of output classes
    """
    __inject__ = ['head', 'box_coder', 'nms']
101
    __shared__ = ['num_classes']
102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239

    def __init__(self,
                 head,
                 box_coder=BoxCoder().__dict__,
                 nms=MultiClassNMS().__dict__,
                 num_classes=81):
        super(BBoxHead, self).__init__()
        self.head = head
        self.num_classes = num_classes
        self.box_coder = box_coder
        self.nms = nms
        if isinstance(box_coder, dict):
            self.box_coder = BoxCoder(**box_coder)
        if isinstance(nms, dict):
            self.nms = MultiClassNMS(**nms)
        self.head_feat = None

    def get_head_feat(self, input=None):
        """
        Get the bbox head feature map.
        """

        if input is not None:
            feat = self.head(input)
            if isinstance(feat, OrderedDict):
                feat = list(feat.values())[0]
            self.head_feat = feat
        return self.head_feat

    def _get_output(self, roi_feat):
        """
        Get bbox head output.

        Args:
            roi_feat (Variable): RoI feature from RoIExtractor.

        Returns:
            cls_score(Variable): Output of rpn head with shape of
                [N, num_anchors, H, W].
            bbox_pred(Variable): Output of rpn head with shape of
                [N, num_anchors * 4, H, W].
        """
        head_feat = self.get_head_feat(roi_feat)
        # when ResNetC5 output a single feature map
        if not isinstance(self.head, TwoFCHead):
            head_feat = fluid.layers.pool2d(
                head_feat, pool_type='avg', global_pooling=True)
        cls_score = fluid.layers.fc(input=head_feat,
                                    size=self.num_classes,
                                    act=None,
                                    name='cls_score',
                                    param_attr=ParamAttr(
                                        name='cls_score_w',
                                        initializer=Normal(
                                            loc=0.0, scale=0.01)),
                                    bias_attr=ParamAttr(
                                        name='cls_score_b',
                                        learning_rate=2.,
                                        regularizer=L2Decay(0.)))
        bbox_pred = fluid.layers.fc(input=head_feat,
                                    size=4 * self.num_classes,
                                    act=None,
                                    name='bbox_pred',
                                    param_attr=ParamAttr(
                                        name='bbox_pred_w',
                                        initializer=Normal(
                                            loc=0.0, scale=0.001)),
                                    bias_attr=ParamAttr(
                                        name='bbox_pred_b',
                                        learning_rate=2.,
                                        regularizer=L2Decay(0.)))
        return cls_score, bbox_pred

    def get_loss(self, roi_feat, labels_int32, bbox_targets,
                 bbox_inside_weights, bbox_outside_weights):
        """
        Get bbox_head loss.

        Args:
            roi_feat (Variable): RoI feature from RoIExtractor.
            labels_int32(Variable): Class label of a RoI with shape [P, 1].
                P is the number of RoI.
            bbox_targets(Variable): Box label of a RoI with shape
                [P, 4 * class_nums].
            bbox_inside_weights(Variable): Indicates whether a box should
                contribute to loss. Same shape as bbox_targets.
            bbox_outside_weights(Variable): Indicates whether a box should
                contribute to loss. Same shape as bbox_targets.

        Return:
            Type: Dict
                loss_cls(Variable): bbox_head loss.
                loss_bbox(Variable): bbox_head loss.
        """

        cls_score, bbox_pred = self._get_output(roi_feat)

        labels_int64 = fluid.layers.cast(x=labels_int32, dtype='int64')
        labels_int64.stop_gradient = True
        loss_cls = fluid.layers.softmax_with_cross_entropy(
            logits=cls_score, label=labels_int64, numeric_stable_mode=True)
        loss_cls = fluid.layers.reduce_mean(loss_cls)
        loss_bbox = fluid.layers.smooth_l1(
            x=bbox_pred,
            y=bbox_targets,
            inside_weight=bbox_inside_weights,
            outside_weight=bbox_outside_weights,
            sigma=1.0)
        loss_bbox = fluid.layers.reduce_mean(loss_bbox)
        return {'loss_cls': loss_cls, 'loss_bbox': loss_bbox}

    def get_prediction(self, roi_feat, rois, im_info, im_shape):
        """
        Get prediction bounding box in test stage.

        Args:
            rois (Variable): Output of generate_proposals in rpn head.
            im_info (Variable): A 2-D LoDTensor with shape [B, 3]. B is the
                number of input images, each element consists of im_height,
                im_width, im_scale.
            cls_score (Variable), bbox_pred(Variable): Output of get_output.

        Returns:
            pred_result(Variable): Prediction result with shape [N, 6]. Each
                row has 6 values: [label, confidence, xmin, ymin, xmax, ymax].
                N is the total number of prediction.
        """
        cls_score, bbox_pred = self._get_output(roi_feat)

        im_scale = fluid.layers.slice(im_info, [1], starts=[2], ends=[3])
        im_scale = fluid.layers.sequence_expand(im_scale, rois)
        boxes = rois / im_scale
        cls_prob = fluid.layers.softmax(cls_score, use_cudnn=False)
        bbox_pred = fluid.layers.reshape(bbox_pred, (-1, self.num_classes, 4))
        decoded_box = self.box_coder(prior_box=boxes, target_box=bbox_pred)
        cliped_box = fluid.layers.box_clip(input=decoded_box, im_info=im_shape)
        pred_result = self.nms(bboxes=cliped_box, scores=cls_prob)
        return {'bbox': pred_result}