maxouting.h 2.7 KB
Newer Older
W
wanghaox 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#pragma once
#include "paddle/framework/eigen.h"
#include "paddle/framework/tensor.h"
#include "paddle/platform/device_context.h"
#include "paddle/platform/hostdevice.h"

namespace paddle {
namespace operators {
namespace math {

W
wanghaox 已提交
25

W
wanghaox 已提交
26
#define FLT_MAX \
W
wanghaox 已提交
27
    __FLT_MAX__
W
wanghaox 已提交
28 29

/*
W
wanghaox 已提交
30 31
 * \brief Extracting simple operations from maxout.
 *        need "initial", "compute"
W
wanghaox 已提交
32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65
 * operation.
 */
template <class T>
class MaxOut {
 public:
  DEVICE inline T initial() { return static_cast<T>(-FLT_MAX); }
  DEVICE inline void compute(T& y, const T& x) { y = y > x ? y : x; }
};

template <class T>
class MaxOutGrad {
 public:
  DEVICE inline void compute(const T& x, const T& y, const T& dy, T& dx,
                             T scale) {
    dx += dy * (x == y);
  }
};


/*
 * \brief Getting pooling results, and calculating gradient.
 *
 * In pool2d, all tensors are in NCHW format. Where N is batch size, C is the
 * number of channels, H and W is the height and width of feature.
 * In pool3d, all tensors are in NCDHW format. Where N is batch size, C is the
 * number of channels, D, H and W is the depth, height and width of feature.
 *
 * In max pooling, it is possible that the pooling region has multiple maximum
 * elements. In this case, we should compute the gradient of the first maximum
 * element.
 * This is different from average pooling. So we rewrite the max_pool_grad:
 * MaxPool2dGradFunctor, MaxPool3dGradFunctor.
 */
template <typename Place, typename MaxOutProcess, typename T>
W
wanghaox 已提交
66

W
wanghaox 已提交
67 68 69
class MaxOutFunctor {
 public:
  void operator()(const platform::DeviceContext& context,
W
wanghaox 已提交
70 71
                  const framework::Tensor& input, framework::Tensor * output,
                  int groups, MaxOutProcess maxout_compute);
W
wanghaox 已提交
72 73 74 75 76 77 78 79 80 81
};


template <typename Place, class T>
class MaxOutGradFunctor {
 public:
  void operator()(const platform::DeviceContext& context,
                  const framework::Tensor& input,
                  framework::Tensor& input_grad,
                  const framework::Tensor& output,
W
wanghaox 已提交
82
                  const framework::Tensor& output_grad, int groups);
W
wanghaox 已提交
83 84 85 86 87 88 89 90 91 92 93
};







}  // namespace math
}  // namespace operators
}  // namespace paddle