“7312ba276c3d3d287441e6235e042cd410a7b197”上不存在“doc/python_pipeline_server/PIPELINE_SERVING.md”
executor_thread_worker.cc 20.8 KB
Newer Older
W
Wang Guibao 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#include "paddle/fluid/framework/executor_thread_worker.h"
H
heqiaozhi 已提交
16
#include <algorithm>
W
Wang Guibao 已提交
17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34
#include "google/protobuf/io/zero_copy_stream_impl.h"
#include "google/protobuf/message.h"
#include "google/protobuf/text_format.h"

#include "gflags/gflags.h"
#include "paddle/fluid/framework/feed_fetch_method.h"
#include "paddle/fluid/framework/feed_fetch_type.h"
#include "paddle/fluid/framework/lod_rank_table.h"
#include "paddle/fluid/framework/lod_tensor_array.h"
#include "paddle/fluid/framework/op_registry.h"
#include "paddle/fluid/framework/reader.h"
#include "paddle/fluid/framework/variable_helper.h"
#include "paddle/fluid/inference/io.h"
#include "paddle/fluid/platform/place.h"
#include "paddle/fluid/pybind/pybind.h"
namespace paddle {
namespace framework {

H
heqiaozhi 已提交
35
#ifdef PADDLE_WITH_PSLIB
36
int DensePullThread::start() {
D
dongdaxiang 已提交
37 38 39
  _running = true;
  _t = std::thread(&DensePullThread::run, this);
  return 0;
40 41 42
}

void DensePullThread::run() {
D
dongdaxiang 已提交
43 44 45 46 47 48 49 50 51 52 53
  while (_running) {
    _pull_dense_status.resize(0);
    for (auto& t : _dense_variable_name) {
      if (check_update_param(t.first)) {
        auto status = pull_dense(t.first);
        _pull_dense_status.emplace_back(std::move(status));
        reset_thread_version(t.first);
      }
    }
    if (_pull_dense_status.size() != 0) {
      wait_all();
54
    }
H
heqiaozhi 已提交
55

D
dongdaxiang 已提交
56 57
    usleep(_sleep_time_ms * 1000);
  }
58 59
}
bool DensePullThread::check_update_param(uint64_t table_id) {
D
dongdaxiang 已提交
60 61 62 63 64 65 66 67 68 69
  {
    std::lock_guard<std::mutex> lock(_mutex_for_version);
    auto& version = _training_versions[table_id];
    _current_version[table_id] =
        *(std::min_element(version.begin(), version.end()));
  }
  if (_current_version[table_id] - _last_versions[table_id] < _threshold) {
    return false;
  }
  return true;
70 71 72
}

void DensePullThread::reset_thread_version(uint64_t table_id) {
D
dongdaxiang 已提交
73 74
  std::lock_guard<std::mutex> lock(_mutex_for_version);
  _last_versions[table_id] = _current_version[table_id];
75 76
}
std::future<int32_t> DensePullThread::pull_dense(uint64_t table_id) {
D
dongdaxiang 已提交
77 78 79 80
  auto& regions = _regions[table_id];
  regions.clear();
  auto& variables = _dense_variable_name[table_id];
  regions.resize(variables.size());
H
heqiaozhi 已提交
81

D
dongdaxiang 已提交
82 83 84 85
  for (auto i = 0u; i < variables.size(); ++i) {
    auto& t = variables[i];
    Variable* var = _root_scope->FindVar(t);
    LoDTensor* tensor = var->GetMutable<LoDTensor>();
H
heqiaozhi 已提交
86

D
dongdaxiang 已提交
87 88 89 90 91
    float* w = tensor->data<float>();
    paddle::ps::Region reg(w, tensor->numel());
    regions[i] = std::move(reg);
  }
  return _ps_client->pull_dense(regions.data(), regions.size(), table_id);
92 93 94
}

void DensePullThread::wait_all() {
D
dongdaxiang 已提交
95 96 97 98
  for (auto& t : _pull_dense_status) {
    t.wait();
    auto status = t.get();
    if (status != 0) {
H
heqiaozhi 已提交
99
      LOG(WARNING) << "pull dense failed times:" << ++_pull_dense_fail_times;
100
    }
D
dongdaxiang 已提交
101
  }
H
heqiaozhi 已提交
102

D
dongdaxiang 已提交
103 104 105 106
  if (_pull_dense_fail_times > 20) {
    LOG(FATAL) << "pull dense failed times more than 20 times";
    exit(-1);
  }
H
heqiaozhi 已提交
107

D
dongdaxiang 已提交
108
  _pull_dense_status.resize(0);
109 110
}

H
heqiaozhi 已提交
111 112
void DensePullThread::increase_thread_version(int thread_id,
                                              uint64_t table_id) {
D
dongdaxiang 已提交
113 114
  std::lock_guard<std::mutex> lock(_mutex_for_version);
  _training_versions[table_id][thread_id]++;
115
}
D
dongdaxiang 已提交
116
#endif
H
heqiaozhi 已提交
117

W
Wang Guibao 已提交
118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305
void ExecutorThreadWorker::CreateThreadOperators(const ProgramDesc& program) {
  auto& block = program.Block(0);
  op_names_.clear();
  for (auto& op_desc : block.AllOps()) {
    std::unique_ptr<OperatorBase> local_op = OpRegistry::CreateOp(*op_desc);
    op_names_.push_back(op_desc->Type());
    OperatorBase* local_op_ptr = local_op.release();
    ops_.push_back(local_op_ptr);
    continue;
  }
}

void ExecutorThreadWorker::CreateThreadResource(
    const framework::ProgramDesc& program,
    const paddle::platform::Place& place) {
  CreateThreadScope(program);
  CreateThreadOperators(program);
  SetMainProgram(program);
  SetPlace(place);
}

void ExecutorThreadWorker::CreateThreadScope(const ProgramDesc& program) {
  auto& block = program.Block(0);

  PADDLE_ENFORCE_NOT_NULL(
      root_scope_, "root_scope should be set before creating thread scope");

  thread_scope_ = &root_scope_->NewScope();
  for (auto& var : block.AllVars()) {
    if (var->Persistable()) {
      auto* ptr = root_scope_->Var(var->Name());
      InitializeVariable(ptr, var->GetType());
    } else {
      auto* ptr = thread_scope_->Var(var->Name());
      InitializeVariable(ptr, var->GetType());
    }
  }
}

void ExecutorThreadWorker::SetDataFeed(
    const std::shared_ptr<DataFeed>& datafeed) {
  thread_reader_ = datafeed;
}

void ExecutorThreadWorker::BindingDataFeedMemory() {
  const std::vector<std::string>& input_feed =
      thread_reader_->GetUseSlotAlias();
  for (auto name : input_feed) {
    thread_reader_->AddFeedVar(thread_scope_->Var(name), name);
  }
}

void ExecutorThreadWorker::SetFetchVarNames(
    const std::vector<std::string>& fetch_var_names) {
  fetch_var_names_.clear();
  fetch_var_names_.insert(fetch_var_names_.end(), fetch_var_names.begin(),
                          fetch_var_names.end());
}

void ExecutorThreadWorker::SetDevice() {
#if defined _WIN32 || defined __APPLE__
  return;
#else
  static unsigned concurrency_cap = std::thread::hardware_concurrency();
  int thread_id = this->thread_id_;

  if (thread_id < concurrency_cap) {
    unsigned proc = thread_id;

    cpu_set_t mask;
    CPU_ZERO(&mask);
    CPU_SET(proc, &mask);

    if (-1 == sched_setaffinity(0, sizeof(mask), &mask)) {
      VLOG(1) << "WARNING: Failed to set thread affinity for thread "
              << thread_id;
    } else {
      CPU_ZERO(&mask);
      if ((0 != sched_getaffinity(0, sizeof(mask), &mask)) ||
          (CPU_ISSET(proc, &mask) == 0)) {
        VLOG(3) << "WARNING: Failed to set thread affinity for thread "
                << thread_id;
      }
    }
  } else {
    VLOG(1) << "WARNING: Failed to set thread affinity for thread "
            << thread_id;
  }
#endif
}

template <typename T>
void print_lod_tensor(std::string var_name, const LoDTensor& lod_tensor) {
  auto inspect = lod_tensor.data<T>();
  auto element_num = lod_tensor.numel();

  std::ostringstream sstream;
  sstream << var_name << " (element num " << element_num << "): [";
  sstream << inspect[0];
  for (int j = 1; j < element_num; ++j) {
    sstream << " " << inspect[j];
  }
  sstream << "]";

  std::cout << sstream.str() << std::endl;
}

void print_fetch_var(Scope* scope, std::string var_name) {
  const LoDTensor& tensor = scope->FindVar(var_name)->Get<LoDTensor>();

  if (std::type_index(tensor.type()) ==
      std::type_index(typeid(platform::float16))) {
    print_lod_tensor<platform::float16>(var_name, tensor);
  } else if (std::type_index(tensor.type()) == std::type_index(typeid(float))) {
    print_lod_tensor<float>(var_name, tensor);
  } else if (std::type_index(tensor.type()) ==
             std::type_index(typeid(double))) {
    print_lod_tensor<double>(var_name, tensor);
  } else if (std::type_index(tensor.type()) == std::type_index(typeid(int))) {
    print_lod_tensor<int>(var_name, tensor);
  } else if (std::type_index(tensor.type()) ==
             std::type_index(typeid(int64_t))) {
    print_lod_tensor<int64_t>(var_name, tensor);
  } else if (std::type_index(tensor.type()) == std::type_index(typeid(bool))) {
    print_lod_tensor<bool>(var_name, tensor);
  } else if (std::type_index(tensor.type()) ==
             std::type_index(typeid(uint8_t))) {
    print_lod_tensor<uint8_t>(var_name, tensor);
  } else if (std::type_index(tensor.type()) ==
             std::type_index(typeid(int16_t))) {
    print_lod_tensor<int16_t>(var_name, tensor);
  } else if (std::type_index(tensor.type()) ==
             std::type_index(typeid(int8_t))) {
    print_lod_tensor<int8_t>(var_name, tensor);
  } else {
    VLOG(1) << "print_fetch_var: unrecognized data type:"
            << tensor.type().name();
  }

  return;
}

void ExecutorThreadWorker::TrainFiles() {
  // todo: configurable
  SetDevice();

  int fetch_var_num = fetch_var_names_.size();
  fetch_values_.clear();
  fetch_values_.resize(fetch_var_num);

  thread_reader_->Start();

  int cur_batch;
  int batch_cnt = 0;
  while ((cur_batch = thread_reader_->Next()) > 0) {
    // executor run here
    for (auto& op : ops_) {
      op->Run(*thread_scope_, place_);
    }

    ++batch_cnt;
    thread_scope_->DropKids();

    if (debug_ == false || thread_id_ != 0) {
      continue;
    }

    for (int i = 0; i < fetch_var_num; ++i) {
      print_fetch_var(thread_scope_, fetch_var_names_[i]);
    }  // end for (int i = 0...)
  }    // end while ()
}

void ExecutorThreadWorker::SetThreadId(int tid) { thread_id_ = tid; }

void ExecutorThreadWorker::SetPlace(const platform::Place& place) {
  place_ = place;
}

void ExecutorThreadWorker::SetMainProgram(
    const ProgramDesc& main_program_desc) {
  main_program_.reset(new ProgramDesc(main_program_desc));
}

void ExecutorThreadWorker::SetRootScope(Scope* g_scope) {
  root_scope_ = g_scope;
}

H
heqiaozhi 已提交
306
#ifdef PADDLE_WITH_PSLIB
307
//  AsyncExecutor
308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335
void AsyncExecutorThreadWorker::TrainFiles() {
  SetDevice();

  int fetch_var_num = fetch_var_names_.size();
  fetch_values_.clear();
  fetch_values_.resize(fetch_var_num);

  thread_reader_->Start();

  int cur_batch;
  int batch_cnt = 0;
  while ((cur_batch = thread_reader_->Next()) > 0) {
    // executor run here
    TrainOneNetwork();

    ++batch_cnt;
    thread_scope_->DropKids();

    if (debug_ == false || thread_id_ != 0) {
      continue;
    }

    for (int i = 0; i < fetch_var_num; ++i) {
      print_fetch_var(thread_scope_, fetch_var_names_[i]);
    }  // end for (int i = 0...)
  }    // end while ()
}

336 337
void AsyncExecutorThreadWorker::SetPSlibPtr(
    std::shared_ptr<paddle::distributed::PSlib> pslib_ptr) {
D
dongdaxiang 已提交
338
  _pslib_ptr = pslib_ptr;
339
}
340 341
void AsyncExecutorThreadWorker::SetPullDenseThread(
    std::shared_ptr<DensePullThread> dpt) {
D
dongdaxiang 已提交
342
  _pull_dense_thread = dpt;
343 344
}
void AsyncExecutorThreadWorker::TrainOneNetwork() {
D
dongdaxiang 已提交
345
  PrepareParams();
H
heqiaozhi 已提交
346

D
dongdaxiang 已提交
347 348 349 350 351 352
  for (auto& op : ops_) {
    if (op->Type().find("sgd") != std::string::npos) {
      continue;
    }
    bool need_skip = false;
    for (auto t = 0u; t < _param_config->skip_op.size(); ++t) {
H
heqiaozhi 已提交
353
      if (op->Type().find(_param_config->skip_op[t]) != std::string::npos) {
D
dongdaxiang 已提交
354 355 356 357 358 359
        need_skip = true;
        break;
      }
    }
    if (!need_skip) {
      op->Run(*thread_scope_, place_);
360
    }
D
dongdaxiang 已提交
361 362
  }
  UpdateParams();
363 364
}

365 366
void AsyncExecutorThreadWorker::SetParamConfig(
    AsyncWorkerParamConfig* param_config) {
D
dongdaxiang 已提交
367
  _param_config = param_config;
368 369 370
}

void AsyncExecutorThreadWorker::PrepareParams() {
D
dongdaxiang 已提交
371 372 373 374 375 376 377 378 379
  for (auto table_id : _param_config->sparse_table_id) {
    PullSparse(table_id);
    for (auto& t : _pull_sparse_status) {
      t.wait();
      auto status = t.get();
      if (status != 0) {
        LOG(ERROR) << "pull sparse failed, status[" << status << "]";
        exit(-1);
      }
380
    }
D
dongdaxiang 已提交
381 382
  }
  _pull_sparse_status.resize(0);
383

D
dongdaxiang 已提交
384 385 386
  for (auto table_id : _param_config->sparse_table_id) {
    FillSparse(table_id);
  }
387 388 389
}

void AsyncExecutorThreadWorker::UpdateParams() {
390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405
  for (auto i : _param_config->sparse_table_id) {
    PushSparse(i);
  }
  for (auto i : _param_config->dense_table_id) {
    PushDense(i);
  }
  int32_t tmp_push_dense_wait_times = -1;
  int32_t tmp_push_sparse_wait_times = -1;
  static uint32_t push_dense_wait_times =
      static_cast<uint32_t>(tmp_push_dense_wait_times);
  static uint32_t push_sparse_wait_times =
      static_cast<uint32_t>(tmp_push_sparse_wait_times);

  if (_push_dense_status.size() >= push_dense_wait_times) {
    for (auto& t : _push_dense_status) {
      t.wait();
406
    }
407 408 409 410 411 412 413 414
    _push_dense_status.resize(0);
  }
  if (tmp_push_dense_wait_times == -1) {
    _push_dense_status.resize(0);
  }
  if (_push_sparse_status.size() >= push_sparse_wait_times) {
    for (auto& t : _push_sparse_status) {
      t.wait();
H
heqiaozhi 已提交
415
    }
416 417 418 419 420 421 422 423
    _push_sparse_status.resize(0);
  }
  if (tmp_push_sparse_wait_times == -1) {
    _push_sparse_status.resize(0);
  }
  for (auto dense_table_id : _param_config->dense_table_id) {
    _pull_dense_thread->increase_thread_version(thread_id_, dense_table_id);
  }
424 425 426
}

void AsyncExecutorThreadWorker::PushDense(int table_id) {
D
dongdaxiang 已提交
427 428 429 430 431 432 433 434 435 436
  std::vector<paddle::ps::Region> regions;
  for (auto& t : _param_config->dense_gradient_variable_name[table_id]) {
    Variable* var = thread_scope_->FindVar(t);
    CHECK(var != nullptr) << "var[" << t << "] not found";
    LoDTensor* tensor = var->GetMutable<LoDTensor>();
    int count = tensor->numel();
    float* g = tensor->data<float>();
    paddle::ps::Region reg(g, count);
    regions.emplace_back(std::move(reg));
  }
H
heqiaozhi 已提交
437 438 439

  auto status = _pslib_ptr->_worker_ptr->push_dense(regions.data(),
                                                    regions.size(), table_id);
D
dongdaxiang 已提交
440
  _push_dense_status.push_back(std::move(status));
441 442 443
}

void AsyncExecutorThreadWorker::PullSparse(int table_id) {
444 445 446 447 448 449 450
  auto& features = _features[table_id];
  auto& feature_value = _feature_value[table_id];
  auto fea_dim = _param_config->fea_dim;
  // slot id starts from 1
  features.clear();
  features.resize(0);
  features.reserve(MAX_FEASIGN_NUM);
H
heqiaozhi 已提交
451
  const std::vector<std::string>& feed_vec = thread_reader_->GetUseSlotAlias();
452 453 454 455 456 457 458 459 460 461 462 463 464
  // slot_idx = 0 is label TODO
  for (auto slot_idx = 1u; slot_idx < feed_vec.size(); ++slot_idx) {
    Variable* var = thread_scope_->FindVar(feed_vec[slot_idx]);
    LoDTensor* tensor = var->GetMutable<LoDTensor>();
    int64_t* ids = tensor->data<int64_t>();
    int len = tensor->numel();
    for (auto i = 0u; i < len; ++i) {
      // todo(colourful-tree): current trick - filter feasign=use_slot_mod(
      // bug: datafeed fill use_slot_mod for empty slot)
      if (ids[i] == 0u) {
        continue;
      }
      features.push_back(static_cast<uint64_t>(ids[i]));
H
heqiaozhi 已提交
465
    }
466
  }
H
heqiaozhi 已提交
467 468
  check_pull_push_memory(features, &feature_value, fea_dim);

469 470 471 472
  std::vector<float*> pull_feature_value;
  for (auto i = 0u; i < features.size(); ++i) {
    pull_feature_value.push_back(feature_value[i].data());
  }
H
heqiaozhi 已提交
473

474 475 476
  auto status = _pslib_ptr->_worker_ptr->pull_sparse(
      pull_feature_value.data(), table_id, features.data(), features.size());
  _pull_sparse_status.push_back(std::move(status));
H
heqiaozhi 已提交
477

478
  auto& push_g = _feature_push_value[table_id];
H
heqiaozhi 已提交
479 480
  check_pull_push_memory(features, &push_g, fea_dim);

481
  collect_feasign_info(table_id);
482 483 484
}

void AsyncExecutorThreadWorker::FillSparse(int table_id) {
485 486 487 488
  auto slot_dim = _param_config->slot_dim;
  auto fea_dim = _param_config->fea_dim;
  auto& features = _features[table_id];
  auto& fea_value = _feature_value[table_id];
H
heqiaozhi 已提交
489

490
  CHECK(features.size() > 0) << "feature size check failed";
H
heqiaozhi 已提交
491

492
  auto fea_idx = 0u;
H
heqiaozhi 已提交
493

494
  std::vector<float> init_value(fea_dim);
H
heqiaozhi 已提交
495 496

  const std::vector<std::string>& feed_vec = thread_reader_->GetUseSlotAlias();
497 498 499 500 501 502 503 504 505
  // slot_idx = 0 is label TODO
  for (auto slot_idx = 1u; slot_idx < feed_vec.size(); ++slot_idx) {
    Variable* var = thread_scope_->FindVar(feed_vec[slot_idx]);
    LoDTensor* tensor = var->GetMutable<LoDTensor>();
    int64_t* ids = tensor->data<int64_t>();
    int len = tensor->numel();
    Variable* var_emb = thread_scope_->FindVar(
        _param_config->slot_input_vec[table_id][slot_idx - 1]);
    LoDTensor* tensor_emb = var_emb->GetMutable<LoDTensor>();
H
heqiaozhi 已提交
506 507
    float* ptr =
        tensor_emb->mutable_data<float>({len, slot_dim}, platform::CPUPlace());
508 509
    memset(ptr, 0, sizeof(float) * len * slot_dim);
    auto& tensor_lod = tensor->lod()[0];
H
heqiaozhi 已提交
510

511 512
    LoD data_lod{tensor_lod};
    tensor_emb->set_lod(data_lod);
H
heqiaozhi 已提交
513

514 515
    for (auto index = 0u; index < len; ++index) {
      if (ids[index] == 0u) {
H
heqiaozhi 已提交
516 517
        memcpy(ptr + slot_dim * index, init_value.data() + 2,
               sizeof(float) * slot_dim);
518 519
        continue;
      }
H
heqiaozhi 已提交
520 521
      memcpy(ptr + slot_dim * index, fea_value[fea_idx].data() + 2,
             sizeof(float) * slot_dim);
522
      fea_idx++;
523
    }
524
  }
525 526 527
}

void AsyncExecutorThreadWorker::PushSparse(int table_id) {
528 529 530 531
  auto slot_dim = _param_config->slot_dim;
  auto fea_dim = _param_config->fea_dim;
  auto& features = _features[table_id];
  auto& push_g = _feature_push_value[table_id];
H
heqiaozhi 已提交
532 533 534 535
  check_pull_push_memory(features, &push_g, fea_dim);
  CHECK(push_g.size() == features.size() + 1)
      << "push_g size:" << push_g.size()
      << " features size:" << features.size();
536 537 538 539
  uint64_t fea_idx = 0u;
  auto& fea_info = _fea_info[table_id];
  int offset = 2;
  const std::vector<std::string>& feed_vec = thread_reader_->GetUseSlotAlias();
H
heqiaozhi 已提交
540
  // slot_idx = 0 is label
541
  for (auto slot_idx = 1u; slot_idx < feed_vec.size(); ++slot_idx) {
H
heqiaozhi 已提交
542 543 544 545 546 547
    if (_param_config->slot_alias_to_table.find(feed_vec[slot_idx]) ==
        _param_config->slot_alias_to_table.end()) {
      LOG(ERROR) << "ERROR slot_idx:" << slot_idx
                 << " name:" << feed_vec[slot_idx];
    } else if (_param_config->slot_alias_to_table[feed_vec[slot_idx]] !=
               table_id) {
548
      continue;
549
    }
550 551
    Variable* g_var = thread_scope_->FindVar(
        _param_config->gradient_var[table_id][slot_idx - 1]);
H
heqiaozhi 已提交
552 553 554
    CHECK(g_var != nullptr)
        << "var[" << _param_config->gradient_var[table_id][slot_idx - 1]
        << "] not found";
555 556
    LoDTensor* g_tensor = g_var->GetMutable<LoDTensor>();
    if (g_tensor == NULL) {
H
heqiaozhi 已提交
557 558 559
      LOG(ERROR) << "var["
                 << _param_config->gradient_var[table_id][slot_idx - 1]
                 << "] not found";
560 561 562
      exit(-1);
    }
    float* g = g_tensor->data<float>();
H
heqiaozhi 已提交
563

564 565 566 567 568 569 570 571
    Variable* var = thread_scope_->FindVar(feed_vec[slot_idx]);
    CHECK(var != nullptr) << "var[" << feed_vec[slot_idx] << "] not found";
    LoDTensor* tensor = var->GetMutable<LoDTensor>();
    if (tensor == NULL) {
      LOG(ERROR) << "var[" << feed_vec[slot_idx] << "] not found";
      exit(-1);
    }
    int len = tensor->numel();
H
heqiaozhi 已提交
572 573 574 575
    CHECK(slot_dim * len == g_tensor->numel())
        << "len:" << len << " g_numel:" << g_tensor->numel();
    CHECK(len == tensor->numel()) << "len:" << len
                                  << "t_numel:" << tensor->numel();
576 577 578 579 580 581
    int64_t* ids = tensor->data<int64_t>();
    for (auto id_idx = 0u; id_idx < len; ++id_idx) {
      if (ids[id_idx] == 0) {
        g += slot_dim;
        continue;
      }
H
heqiaozhi 已提交
582
      memcpy(push_g[fea_idx].data() + offset, g, sizeof(float) * slot_dim);
583
      push_g[fea_idx][0] = 1.0f;
H
heqiaozhi 已提交
584 585
      CHECK(fea_idx < fea_info.size()) << "fea_idx:" << fea_idx
                                       << " size:" << fea_info.size();
586 587 588
      push_g[fea_idx][1] = static_cast<float>(fea_info[fea_idx].label);
      g += slot_dim;
      fea_idx++;
589
    }
590
  }
H
heqiaozhi 已提交
591 592
  CHECK(fea_idx == features.size()) << "fea_idx:" << fea_idx
                                    << " features size:" << features.size();
593
  CHECK_GT(features.size(), 0);
H
heqiaozhi 已提交
594

595 596 597 598 599
  std::vector<float*> push_g_vec;
  for (auto i = 0u; i < features.size(); ++i) {
    push_g_vec.push_back(push_g[i].data());
  }
  auto status = _pslib_ptr->_worker_ptr->push_sparse(
H
heqiaozhi 已提交
600 601
      table_id, features.data(), (const float**)push_g_vec.data(),
      features.size());
602
  _push_sparse_status.push_back(std::move(status));
603 604
}

H
heqiaozhi 已提交
605
void AsyncExecutorThreadWorker::collect_feasign_info(int table_id) {
606 607 608 609 610 611 612
  auto& fea_info = _fea_info[table_id];
  auto& feature = _features[table_id];
  fea_info.resize(feature.size());
  const std::vector<std::string>& feed_vec = thread_reader_->GetUseSlotAlias();
  Variable* var = thread_scope_->FindVar(feed_vec[0]);
  LoDTensor* tensor = var->GetMutable<LoDTensor>();
  int64_t* label = tensor->data<int64_t>();
H
heqiaozhi 已提交
613

614 615 616
  int global_index = 0;
  for (auto slot_idx = 1u; slot_idx < feed_vec.size(); ++slot_idx) {
    Variable* var = thread_scope_->FindVar(feed_vec[slot_idx]);
617
    LoDTensor* tensor = var->GetMutable<LoDTensor>();
618
    int64_t* ids = tensor->data<int64_t>();
H
heqiaozhi 已提交
619

620 621 622 623 624
    int fea_idx = 0;
    for (auto ins_idx = 1u; ins_idx < tensor->lod()[0].size(); ++ins_idx) {
      for (; fea_idx < tensor->lod()[0][ins_idx]; ++fea_idx) {
        if (ids[fea_idx] == 0u) {
          continue;
625
        }
626
        FeasignInfo info{slot_idx, ins_idx, label[ins_idx - 1]};
H
heqiaozhi 已提交
627

628 629
        fea_info[global_index++] = std::move(info);
      }
630
    }
631
  }
H
heqiaozhi 已提交
632 633
  CHECK(global_index == feature.size())
      << "expect fea info size:" << feature.size() << " real:" << global_index;
634 635 636
}

void AsyncExecutorThreadWorker::check_pull_push_memory(
H
heqiaozhi 已提交
637 638 639 640
    const std::vector<uint64_t>& features,
    std::vector<std::vector<float>>* push_g, int dim) {
  push_g->resize(features.size() + 1);
  for (auto& t : *push_g) {
D
dongdaxiang 已提交
641 642
    t.resize(dim);
  }
643 644 645
}

void AsyncExecutorThreadWorker::check_pull_push_memory(
H
heqiaozhi 已提交
646
    const std::vector<uint64_t>& features, std::vector<float*>* push_g,
D
dongdaxiang 已提交
647
    int dim) {
H
heqiaozhi 已提交
648 649 650
  if (features.size() > push_g->size()) {
    push_g->reserve(features.size() + 1);
    auto size = features.size() - push_g->size() + 1;
D
dongdaxiang 已提交
651 652
    for (auto i = 0u; i < size; ++i) {
      float* ptr = new float[dim];
H
heqiaozhi 已提交
653
      push_g->push_back(ptr);
654
    }
D
dongdaxiang 已提交
655
  }
656
}
H
heqiaozhi 已提交
657
#endif
658

W
Wang Guibao 已提交
659 660
}  // einit_modelnd namespace framework
}  // end namespace paddle