recv_op.cc 7.4 KB
Newer Older
L
Luo Tao 已提交
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.
武毅 已提交
2

L
Luo Tao 已提交
3 4 5
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
武毅 已提交
6

L
Luo Tao 已提交
7
    http://www.apache.org/licenses/LICENSE-2.0
武毅 已提交
8

L
Luo Tao 已提交
9 10 11 12 13
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
武毅 已提交
14 15 16 17 18 19 20 21 22 23 24 25

#include <stdint.h>
#include <sys/stat.h>
#include <ostream>
#include <thread>

#include <unistd.h>

#include "paddle/framework/executor.h"
#include "paddle/framework/framework.pb.h"
#include "paddle/framework/lod_tensor.h"
#include "paddle/framework/op_registry.h"
T
typhoonzero 已提交
26
#include "paddle/framework/proto_desc.h"
G
gongweibao 已提交
27 28
#include "paddle/operators/detail/grpc_server.h"
#include "paddle/operators/detail/sendrecvop_utils.h"
武毅 已提交
29 30
#include "paddle/operators/detail/simple_block_queue.h"

T
typhoonzero 已提交
31 32
#define LISTEN_TERMINATE_MESSAGE "TERMINATE@RECV"

武毅 已提交
33 34 35
namespace paddle {
namespace operators {

G
gongweibao 已提交
36 37 38 39 40
void RunServer(std::shared_ptr<detail::AsyncGRPCServer> service) {
  service->RunSyncUpdate();
  VLOG(4) << "RunServer thread end";
}

Y
Yancey 已提交
41 42 43 44 45 46 47 48 49 50 51 52 53 54
static void CreateTensorFromMessageType(framework::Variable *var,
                                        sendrecv::VarType var_type) {
  if (var_type == sendrecv::VarType::LOD_TENSOR) {
    var->GetMutable<framework::LoDTensor>();
  } else if (var_type == sendrecv::VarType::SELECTED_ROWS) {
    var->GetMutable<framework::SelectedRows>();
  } else {
    PADDLE_THROW(
        "VraibleMessage type %d is not in "
        "[LoDTensor, SelectedRows]",
        var_type);
  }
}

武毅 已提交
55 56 57 58 59 60 61 62
class RecvOp : public framework::OperatorBase {
 public:
  RecvOp(const std::string &type, const framework::VariableNameMap &inputs,
         const framework::VariableNameMap &outputs,
         const framework::AttributeMap &attrs)
      : OperatorBase(type, inputs, outputs, attrs) {
    if (!rpc_service_) {
      std::string endpoint = Attr<std::string>("endpoint");
G
gongweibao 已提交
63 64
      rpc_service_.reset(new detail::AsyncGRPCServer(endpoint));
      server_thread_.reset(new std::thread(RunServer, rpc_service_));
武毅 已提交
65 66 67
    }
  }

T
typhoonzero 已提交
68
  void Stop() override {
Y
Yancey 已提交
69
    detail::MessageWithName term_msg;
T
typhoonzero 已提交
70 71
    term_msg.first = LISTEN_TERMINATE_MESSAGE;
    rpc_service_->Push(term_msg);
G
gongweibao 已提交
72
    rpc_service_->ShutDown();
武毅 已提交
73 74 75
    server_thread_->join();
  }

T
done  
typhoonzero 已提交
76
  std::string GetGradVarNameForTrainer(const std::string &varname) const {
T
typhoonzero 已提交
77
    if (grads_counter_.find(varname) == grads_counter_.end()) {
T
done  
typhoonzero 已提交
78 79 80 81 82 83 84 85
      grads_counter_[varname] = 0;
    }
    char ret[256];
    snprintf(ret, sizeof(ret), "%s.trainer_%d", varname.c_str(),
             grads_counter_[varname]++);
    return std::string(ret);
  }

武毅 已提交
86
  void Run(const framework::Scope &scope,
D
dzhwinter 已提交
87
           const platform::Place &dev_place) const override {
T
typhoonzero 已提交
88
    // FIXME(typhoonzero): no new scopes for every run.
武毅 已提交
89
    framework::Scope &recv_scope = scope.NewScope();
T
typhoonzero 已提交
90
    rpc_service_->SetScope(&recv_scope);
T
typhoonzero 已提交
91 92
    auto param_list = Attr<std::vector<std::string>>("ParamList");
    auto grad_list = Attr<std::vector<std::string>>("GradList");
T
done  
typhoonzero 已提交
93
    auto trainer_count = Attr<int>("Trainers");
T
typhoonzero 已提交
94
    size_t param_count = param_list.size();
G
gongweibao 已提交
95

T
typhoonzero 已提交
96
    rpc_service_->Reset();
T
typhoonzero 已提交
97
    // TODO(typhoonzero): change this to a while_op for every cluster-batch.
T
typhoonzero 已提交
98 99
    bool exit_flag = false;
    while (!exit_flag) {
G
gongweibao 已提交
100
      // TODO(gognwb): simply this loop.
T
done  
typhoonzero 已提交
101 102 103
      // Get from multiple trainers, we don't care about order in which
      // the gradient arrives, just add suffix 0~n then average the gradient.
      for (size_t i = 0; i < param_count * trainer_count; ++i) {
T
typhoonzero 已提交
104
        // blocking get one var from client.
Y
Yancey 已提交
105
        const detail::MessageWithName &v = rpc_service_->Get();
T
typhoonzero 已提交
106
        auto grad_var_name = v.first;
T
typhoonzero 已提交
107
        if (grad_var_name == LISTEN_TERMINATE_MESSAGE) {
G
gongweibao 已提交
108
          VLOG(4) << "received LISTEN_TERMINATE_MESSAGE and RunOp.Run() exit";
T
typhoonzero 已提交
109 110 111
          exit_flag = true;
          break;
        }
T
typhoonzero 已提交
112 113 114 115
        auto it = std::find(grad_list.begin(), grad_list.end(), grad_var_name);
        std::string param_var_name;
        if (it != grad_list.end()) {
          param_var_name = param_list[it - grad_list.begin()];
T
typhoonzero 已提交
116
        } else {
G
gongweibao 已提交
117 118
          LOG(ERROR) << "grad have no paired param found!\"" << grad_var_name
                     << "\"";
T
typhoonzero 已提交
119
        }
T
typhoonzero 已提交
120 121
        VLOG(3) << "recved grad: " << grad_var_name
                << " updating param: " << param_var_name;
G
gongweibao 已提交
122

T
typhoonzero 已提交
123 124
        auto *merged_grad = recv_scope.FindVar(grad_var_name);
        if (merged_grad == nullptr) {
Y
Yancey 已提交
125
          auto *ptr = recv_scope.Var(grad_var_name);
Y
Yancey 已提交
126
          CreateTensorFromMessageType(ptr, v.second.type());
Y
Yancey 已提交
127
          VLOG(3) << "Create Variable " << grad_var_name
Y
Yancey 已提交
128 129
                  << " on recv scope, which pointer is " << ptr << " type is "
                  << v.second.type();
T
typhoonzero 已提交
130 131
        }

T
done  
typhoonzero 已提交
132
        if (trainer_count > 1) {
T
typhoonzero 已提交
133
          grad_var_name = this->GetGradVarNameForTrainer(grad_var_name);
T
done  
typhoonzero 已提交
134 135
        }

T
typhoonzero 已提交
136
        auto *var = recv_scope.Var(grad_var_name);
Y
Yancey 已提交
137 138 139 140
        platform::DeviceContextPool &pool =
            platform::DeviceContextPool::Instance();
        auto &dev_ctx = *pool.Get(dev_place);
        detail::DeserializeFromMessage(v.second, dev_ctx, var);
T
typhoonzero 已提交
141
      }
G
gongweibao 已提交
142

T
typhoonzero 已提交
143 144
      if (exit_flag) {
        break;
T
typhoonzero 已提交
145
      }
G
gongweibao 已提交
146

T
typhoonzero 已提交
147
      rpc_service_->Reset();
武毅 已提交
148

T
typhoonzero 已提交
149
      std::string program_str = Attr<std::string>("OptimizeProgram");
T
typhoonzero 已提交
150
      framework::proto::ProgramDesc program_desc;
T
typhoonzero 已提交
151
      program_desc.ParseFromString(program_str);
T
typhoonzero 已提交
152
      framework::ProgramDesc program(program_desc);
T
typhoonzero 已提交
153
      framework::Executor executor(dev_place);
T
typhoonzero 已提交
154 155 156 157 158 159 160
      // Run sub graph to get optimized tensor
      try {
        executor.Run(program, &recv_scope, 0, /*global_block*/
                     false /*create_local_scope*/, false /*create_vars*/);
      } catch (std::exception &e) {
        LOG(ERROR) << "run sub program error " << e.what();
      }
G
gongweibao 已提交
161

T
typhoonzero 已提交
162
      rpc_service_->Done();
T
typhoonzero 已提交
163
      grads_counter_.clear();
T
typhoonzero 已提交
164
    }  // while(true)
武毅 已提交
165 166 167
  }

 protected:
G
gongweibao 已提交
168
  std::shared_ptr<detail::AsyncGRPCServer> rpc_service_;
武毅 已提交
169
  std::shared_ptr<std::thread> server_thread_;
T
done  
typhoonzero 已提交
170
  mutable std::unordered_map<std::string, int> grads_counter_;
武毅 已提交
171 172 173 174
};

class RecvOpMaker : public framework::OpProtoAndCheckerMaker {
 public:
175
  RecvOpMaker(OpProto *proto, OpAttrChecker *op_checker)
武毅 已提交
176
      : OpProtoAndCheckerMaker(proto, op_checker) {
T
typhoonzero 已提交
177
    AddInput("RX", "(Tensor) Input tensor to be optimized").AsDuplicable();
武毅 已提交
178 179 180 181 182 183 184 185 186 187
    AddComment(R"DOC(
Recv operator

This operator will recv tensor from send_op
)DOC");
    AddAttr<std::string>("endpoint",
                         "(string, default 127.0.0.1:6164)"
                         "IP address to listen on.")
        .SetDefault("127.0.0.1:6164")
        .AddCustomChecker([](const std::string &ip) { return !ip.empty(); });
T
typhoonzero 已提交
188 189
    AddAttr<std::string>("OptimizeProgram", "type string",
                         "Serialized ProgramDesc string for recv to run.");
T
typhoonzero 已提交
190 191
    AddAttr<std::vector<std::string>>(
        "ParamList", "type list of string",
Y
Yancey1989 已提交
192 193
        "grad->param name mapping to find which param to optimize.")
        .SetDefault({});
T
typhoonzero 已提交
194 195
    AddAttr<std::vector<std::string>>(
        "GradList", "type list of string",
Y
Yancey1989 已提交
196 197
        "grad->param name mapping to find which param to optimize.")
        .SetDefault({});
T
done  
typhoonzero 已提交
198 199 200
    AddAttr<int>("Trainers", "type int",
                 "Number of trainers in the current cluster job")
        .SetDefault(1);
武毅 已提交
201 202 203 204 205 206 207 208 209
  }
};

}  // namespace operators
}  // namespace paddle

namespace ops = paddle::operators;

REGISTER_OPERATOR(recv, ops::RecvOp, ops::RecvOpMaker);