README_en.md 17.1 KB
Newer Older
1 2
English | [简体中文](README_cn.md)

3 4 5 6 7 8 9
<div align="center">
<p align="center">
  <img src="https://user-images.githubusercontent.com/48054808/160532560-34cf7a1f-d950-435e-90d2-4b0a679e5119.png" align="middle" width = "800" />
</p>

****A High-Efficient Development Toolkit for Object Detection based on [PaddlePaddle](https://github.com/paddlepaddle/paddle).****

Y
YixinKristy 已提交
10 11 12 13 14 15
<p align="center">
    <a href="./LICENSE"><img src="https://img.shields.io/badge/license-Apache%202-dfd.svg"></a>
    <a href="https://github.com/PaddlePaddle/PaddleDetection/releases"><img src="https://img.shields.io/github/v/release/PaddlePaddle/PaddleDetection?color=ffa"></a>
    <a href=""><img src="https://img.shields.io/badge/python-3.7+-aff.svg"></a>
    <a href=""><img src="https://img.shields.io/badge/os-linux%2C%20win%2C%20mac-pink.svg"></a>
    <a href="https://github.com/PaddlePaddle/PaddleDetection/stargazers"><img src="https://img.shields.io/github/stars/PaddlePaddle/PaddleDetection?color=ccf"></a>
16 17 18 19

</div>

## <img src="https://user-images.githubusercontent.com/48054808/157793354-6e7f381a-0aa6-4bb7-845c-9acf2ecc05c3.png" width="20"/> Latest News
20

21
- 🔥 **2022.3.24:PaddleDetection [release 2.4 version](https://github.com/PaddlePaddle/PaddleDetection/tree/release/2.4)**
Y
YixinKristy 已提交
22
  
23
  - Release GPU SOTA object detection series models (s/m/l/x) [PP-YOLOE](configs/ppyoloe), supporting s/m/l/x version, achieving mAP as 51.4% on COCO test dataset and 78.1 FPS on Nvidia V100 by PP-YOLOE-l, supporting AMP training and its training speed is 33% faster than PP-YOLOv2.
24 25
  - Release enhanced models of [PP-PicoDet](configs/picodet), including PP-PicoDet-XS model with 0.7M parameters, its mAP promoted ~2% on COCO, inference speed accelerated 63% on CPU, and post-processing integrated into the network to optimize deployment pipeline.
  - Release real-time human analysis tool [PP-Human](deploy/pphuman), which is based on data from real-life situations, supporting pedestrian detection, attribute recognition, human tracking, multi-camera tracking, human statistics and action recognition.
26
  - Release [YOLOX](configs/yolox), supporting nano/tiny/s/m/l/x version, achieving mAP as 51.8% on COCO val dataset by YOLOX-x.
W
wangguanzhong 已提交
27

W
wangguanzhong 已提交
28
- 2021.11.03: Release [release/2.3](https://github.com/PaddlePaddle/Paddleetection/tree/release/2.3) version. Release mobile object detection model ⚡[PP-PicoDet](configs/picodet), mobile keypoint detection model ⚡[PP-TinyPose](configs/keypoint/tiny_pose),Real-time tracking system [PP-Tracking](deploy/pptracking). Release object detection models, including [Swin-Transformer](configs/faster_rcnn), [TOOD](configs/tood), [GFL](configs/gfl), release [Sniper](configs/sniper) tiny object detection models and optimized [PP-YOLO-EB](configs/ppyolo) model for EdgeBoard. Release mobile keypoint detection model [Lite HRNet](configs/keypoint).
29

K
Kaipeng Deng 已提交
30
- 2021.08.10: Release [release/2.2](https://github.com/PaddlePaddle/Paddleetection/tree/release/2.2) version. Release Transformer object detection models, including [DETR](configs/detr), [Deformable DETR](configs/deformable_detr), [Sparse RCNN](configs/sparse_rcnn). Release [keypoint detection](configs/keypoint) models, including DarkHRNet and model trained on MPII dataset. Release [head-tracking](configs/mot/headtracking21) and [vehicle-tracking](configs/mot/vehicle) multi-object tracking models.
31

32
- 2021.05.20: Release [release/2.1](https://github.com/PaddlePaddle/Paddleetection/tree/release/2.1) version. Release [Keypoint Detection](configs/keypoint), including HigherHRNet and HRNet, [Multi-Object Tracking](configs/mot), including DeepSORT,JDE and FairMOT. Release model compression for PPYOLO series models.Update documents such as [EXPORT ONNX MODEL](deploy/EXPORT_ONNX_MODEL.md).
33

34
## <img title="" src="https://user-images.githubusercontent.com/48054808/157795569-9fc77c85-732f-4870-9be0-99a7fe2cff27.png" alt="" width="20"> Introduction
35

Y
YixinKristy 已提交
36
PaddleDetection is an end-to-end object detection development kit based on PaddlePaddle, which implements varied mainstream object detection, instance segmentation, tracking and keypoint detection algorithms in modular design with configurable modules such as network components, data augmentations and losses. It releases many kinds SOTA industry practice models and integrates abilities of model compression and cross-platform high-performance deployment to help developers in the whole process with a faster and better way.
37

38 39 40 41 42 43 44
#### PaddleDetection provides image processing capabilities such as object detection, instance segmentation, multi-object tracking, keypoint detection and etc.

<div  align="center">
  <img src="docs/images/ppdet.gif" width="800"/>
</div>

#### PaddleDetection covers industrialization, smart city, security & protection, retail, medicare industry and etc.
45

46 47
<div  align="center">
  <img src="https://user-images.githubusercontent.com/48054808/157826886-2e101a71-25a2-42f5-bf5e-30a97be28f46.gif" width="800"/>
48 49
</div>

50
## <img src="https://user-images.githubusercontent.com/48054808/157799599-e6a66855-bac6-4e75-b9c0-96e13cb9612f.png" width="20"/> Features
51

W
Wenyu 已提交
52
- **Rich Models**
Y
YixinKristy 已提交
53
  
54
  PaddleDetection provides rich of models, including **250+ pre-trained models** such as **object detection**, **instance segmentation**, **face detection**, **keypoint detection**, **multi-object tracking** and etc, covering a variety of **global competition champion** schemes.
55

56
- **Highly Flexible**
Y
YixinKristy 已提交
57
  
58
  Components are designed to be modular. Model architectures, as well as data preprocess pipelines and optimization strategies, can be easily customized with simple configuration changes.
59

W
Wenyu 已提交
60
- **Production Ready**
Y
YixinKristy 已提交
61
  
62
  From data augmentation, constructing models, training, compression, depolyment, get through end to end, and complete support for multi-architecture, multi-device deployment for **cloud and edge device**.
63

W
Wenyu 已提交
64
- **High Performance**
Y
YixinKristy 已提交
65
  
66
  Based on the high performance core of PaddlePaddle, advantages of training speed and memory occupation are obvious. FP16 training and multi-machine training are supported as well.
67

68
## <img title="" src="https://user-images.githubusercontent.com/48054808/157800467-2a9946ad-30d1-49a9-b9db-ba33413d9c90.png" alt="" width="20"> Community
69

70 71 72
- If you have any problem or suggestion on PaddleDetection, please send us issues through [GitHub Issues](https://github.com/PaddlePaddle/PaddleDetection/issues).

- Welcome to Join PaddleDetection QQ Group and Wechat Group (reply "Det").
Y
YixinKristy 已提交
73
  
74 75 76 77 78 79
  <div align="center">
  <img src="https://user-images.githubusercontent.com/48054808/157800129-2f9a0b72-6bb8-4b10-8310-93ab1639253f.jpg"  width = "200" />  
  <img src="https://user-images.githubusercontent.com/48054808/160531099-9811bbe6-cfbb-47d5-8bdb-c2b40684d7dd.png"  width = "200" />  
  </div>

## <img src="https://user-images.githubusercontent.com/48054808/157827140-03ffaff7-7d14-48b4-9440-c38986ea378c.png" width="20"/> Overview of Kit Structures
80

K
Kaipeng Deng 已提交
81
<table align="center">
82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98
  <tbody>
    <tr align="center" valign="bottom">
      <td>
        <b>Architectures</b>
      </td>
      <td>
        <b>Backbones</b>
      </td>
      <td>
        <b>Components</b>
      </td>
      <td>
        <b>Data Augmentation</b>
      </td>
    </tr>
    <tr valign="top">
      <td>
K
Kaipeng Deng 已提交
99 100
        <ul>
          <li><b>Object Detection</b></li>
101 102 103 104 105 106
          <ul>
            <li>Faster RCNN</li>
            <li>FPN</li>
            <li>Cascade-RCNN</li>
            <li>Libra RCNN</li>
            <li>Hybrid Task RCNN</li>
K
Kaipeng Deng 已提交
107
            <li>PSS-Det</li>
108 109 110
            <li>RetinaNet</li>
            <li>YOLOv3</li>
            <li>YOLOv4</li>  
K
Kaipeng Deng 已提交
111 112
            <li>PP-YOLOv1/v2</li>
            <li>PP-YOLO-Tiny</li>
113 114
            <li>PP-YOLOE</li>
            <li>YOLOX</li>
115 116 117 118
            <li>SSD</li>
            <li>CornerNet-Squeeze</li>
            <li>FCOS</li>  
            <li>TTFNet</li>
K
Kaipeng Deng 已提交
119 120 121 122 123
            <li>PP-PicoDet</li>
            <li>DETR</li>
            <li>Deformable DETR</li>
            <li>Swin Transformer</li>
            <li>Sparse RCNN</li>
124
        </ul>
K
Kaipeng Deng 已提交
125
        <li><b>Instance Segmentation</b></li>
126
        <ul>
K
Kaipeng Deng 已提交
127 128
            <li>Mask RCNN</li>
            <li>SOLOv2</li>
129
        </ul>
K
Kaipeng Deng 已提交
130
        <li><b>Face Detection</b></li>
K
Kaipeng Deng 已提交
131
        <ul>
K
Kaipeng Deng 已提交
132 133 134
            <li>FaceBoxes</li>
            <li>BlazeFace</li>
            <li>BlazeFace-NAS</li>
K
Kaipeng Deng 已提交
135
        </ul>
K
Kaipeng Deng 已提交
136
        <li><b>Multi-Object-Tracking</b></li>
K
Kaipeng Deng 已提交
137
        <ul>
K
Kaipeng Deng 已提交
138 139
            <li>JDE</li>
            <li>FairMOT</li>
140
            <li>DeepSORT</li>
K
Kaipeng Deng 已提交
141
        </ul>
K
Kaipeng Deng 已提交
142
        <li><b>KeyPoint-Detection</b></li>
K
Kaipeng Deng 已提交
143
        <ul>
K
Kaipeng Deng 已提交
144 145
            <li>HRNet</li>
            <li>HigherHRNet</li>
K
Kaipeng Deng 已提交
146
        </ul>
K
Kaipeng Deng 已提交
147
      </ul>
148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164
      </td>
      <td>
        <ul>
          <li>ResNet(&vd)</li>
          <li>ResNeXt(&vd)</li>
          <li>SENet</li>
          <li>Res2Net</li>
          <li>HRNet</li>
          <li>Hourglass</li>
          <li>CBNet</li>
          <li>GCNet</li>
          <li>DarkNet</li>
          <li>CSPDarkNet</li>
          <li>VGG</li>
          <li>MobileNetv1/v3</li>  
          <li>GhostNet</li>
          <li>Efficientnet</li>  
K
Kaipeng Deng 已提交
165
          <li>BlazeNet</li>  
166 167 168 169 170 171 172 173 174 175 176
        </ul>
      </td>
      <td>
        <ul><li><b>Common</b></li>
          <ul>
            <li>Sync-BN</li>
            <li>Group Norm</li>
            <li>DCNv2</li>
            <li>Non-local</li>
          </ul>  
        </ul>
K
Kaipeng Deng 已提交
177 178 179 180 181
        <ul><li><b>KeyPoint</b></li>
          <ul>
            <li>DarkPose</li>
          </ul>  
        </ul>
182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212
        <ul><li><b>FPN</b></li>
          <ul>
            <li>BiFPN</li>
            <li>BFP</li>  
            <li>HRFPN</li>
            <li>ACFPN</li>
          </ul>  
        </ul>  
        <ul><li><b>Loss</b></li>
          <ul>
            <li>Smooth-L1</li>
            <li>GIoU/DIoU/CIoU</li>  
            <li>IoUAware</li>
          </ul>  
        </ul>  
        <ul><li><b>Post-processing</b></li>
          <ul>
            <li>SoftNMS</li>
            <li>MatrixNMS</li>  
          </ul>  
        </ul>
        <ul><li><b>Speed</b></li>
          <ul>
            <li>FP16 training</li>
            <li>Multi-machine training </li>  
          </ul>  
        </ul>  
      </td>
      <td>
        <ul>
          <li>Resize</li>  
K
Kaipeng Deng 已提交
213
          <li>Lighting</li>  
214 215 216 217 218 219
          <li>Flipping</li>  
          <li>Expand</li>
          <li>Crop</li>
          <li>Color Distort</li>  
          <li>Random Erasing</li>  
          <li>Mixup </li>
K
Kaipeng Deng 已提交
220
          <li>Mosaic</li>
221
          <li>AugmentHSV</li>
222 223 224
          <li>Cutmix </li>
          <li>Grid Mask</li>
          <li>Auto Augment</li>  
K
Kaipeng Deng 已提交
225
          <li>Random Perspective</li>  
226 227 228 229 230 231 232 233 234
        </ul>  
      </td>  
    </tr>

</td>
    </tr>
  </tbody>
</table>

235
## <img src="https://user-images.githubusercontent.com/48054808/157801371-9a9a8c65-1690-4123-985a-e0559a7f9494.png" width="20"/> Overview of Model Performance
K
Kaipeng Deng 已提交
236 237

The relationship between COCO mAP and FPS on Tesla V100 of representative models of each server side architectures and backbones.
238 239 240

<div align="center">
  <img src="docs/images/fps_map.png" />
241
</div>
242

243
**NOTE:**
244

245
- `CBResNet stands` for `Cascade-Faster-RCNN-CBResNet200vd-FPN`, which has highest mAP on COCO as 53.3%
246

247
- `Cascade-Faster-RCNN` stands for `Cascade-Faster-RCNN-ResNet50vd-DCN`, which has been optimized to 20 FPS inference speed when COCO mAP as 47.8% in PaddleDetection models
248

249
- `PP-YOLO` achieves mAP of 45.9% on COCO and 72.9FPS on Tesla V100. Both precision and speed surpass [YOLOv4](https://arxiv.org/abs/2004.10934)
250

251
- `PP-YOLO v2` is optimized version of `PP-YOLO` which has mAP of 49.5% and 68.9FPS on Tesla V100
Y
YixinKristy 已提交
252

W
Wenyu 已提交
253
- `PP-YOLOE` is optimized version of `PP-YOLO v2` which has mAP of 51.4% and 78.1FPS on Tesla V100
Y
YixinKristy 已提交
254

255
- All these models can be get in [Model Zoo](#ModelZoo)
K
Kaipeng Deng 已提交
256 257 258 259

The relationship between COCO mAP and FPS on Qualcomm Snapdragon 865 of representative mobile side models.

<div align="center">
260
  <img src="docs/images/mobile_fps_map.png" width=600/>
K
Kaipeng Deng 已提交
261 262 263
</div>

**NOTE:**
264

265
- All data tested on Qualcomm Snapdragon 865(4*A77 + 4*A55) processor with batch size of 1 and CPU threads of 4, and use NCNN library in testing, benchmark scripts is publiced at [MobileDetBenchmark](https://github.com/JiweiMaster/MobileDetBenchmark)
K
Kaipeng Deng 已提交
266
- [PP-PicoDet](configs/picodet) and [PP-YOLO-Tiny](configs/ppyolo) are developed and released by PaddleDetection, other models are not provided in PaddleDetection.
267

268
## <img src="https://user-images.githubusercontent.com/48054808/157828296-d5eb0ccb-23ea-40f5-9957-29853d7d13a9.png" width="20"/> Tutorials
269 270 271

### Get Started

Y
YixinKristy 已提交
272 273 274
- [Installation Guide](docs/tutorials/INSTALL.md)
- [Prepare Dataset](docs/tutorials/PrepareDataSet_en.md)
- [Quick Start on PaddleDetection](docs/tutorials/GETTING_STARTED.md)
275 276 277

### Advanced Tutorials

Y
YixinKristy 已提交
278 279
- Parameter Configuration
  
qq_30618961's avatar
qq_30618961 已提交
280 281
  - [Parameter configuration for RCNN model](docs/tutorials/config_annotation/faster_rcnn_r50_fpn_1x_coco_annotation_en.md)
  - [Parameter configuration for PP-YOLO model](docs/tutorials/config_annotation/ppyolo_r50vd_dcn_1x_coco_annotation_en.md)
282 283

- Model Compression(Based on [PaddleSlim](https://github.com/PaddlePaddle/PaddleSlim))
Y
YixinKristy 已提交
284
  
285 286
  - [Prune/Quant/Distill](configs/slim)

Y
YixinKristy 已提交
287 288
- Inference and Deployment
  
qq_30618961's avatar
qq_30618961 已提交
289 290
  - [Export model for inference](deploy/EXPORT_MODEL_en.md)
  - [Paddle Inference](deploy/README_en.md)
291 292
    - [Python inference](deploy/python)
    - [C++ inference](deploy/cpp)
G
Guanghua Yu 已提交
293
  - [Paddle-Lite](deploy/lite)
W
wangguanzhong 已提交
294
  - [Paddle Serving](deploy/serving)
qq_30618961's avatar
qq_30618961 已提交
295 296
  - [Export ONNX model](deploy/EXPORT_ONNX_MODEL_en.md)
  - [Inference benchmark](deploy/BENCHMARK_INFER_en.md)
297
  - [Exporting to ONNX and using OpenVINO for inference](docs/advanced_tutorials/openvino_inference/README.md)
298

Y
YixinKristy 已提交
299 300
- Advanced Development
  
qq_30618961's avatar
qq_30618961 已提交
301
  - [New data augmentations](docs/advanced_tutorials/READER_en.md)
302
  - [New detection algorithms](docs/advanced_tutorials/MODEL_TECHNICAL.md)
303

304
## <img src="https://user-images.githubusercontent.com/48054808/157829890-a535b8a6-631c-4c87-b861-64d4b32b2d6a.png" width="20"/> Model Zoo
305

Y
YixinKristy 已提交
306
- General Object Detection
307
  - [Model library and baselines](docs/MODEL_ZOO_cn.md)
308
  - [PP-YOLOE](configs/ppyoloe/README_cn.md)
309
  - [PP-YOLO](configs/ppyolo/README.md)
W
wangguanzhong 已提交
310
  - [PP-PicoDet](configs/picodet/README.md)
qq_30618961's avatar
qq_30618961 已提交
311 312 313 314
  - [Enhanced Anchor Free model--TTFNet](configs/ttfnet/README_en.md)
  - [Mobile models](static/configs/mobile/README_en.md)
  - [676 classes of object detection](static/docs/featured_model/LARGE_SCALE_DET_MODEL_en.md)
  - [Two-stage practical PSS-Det](configs/rcnn_enhance/README_en.md)
315
  - [SSLD pretrained models](docs/feature_models/SSLD_PRETRAINED_MODEL_en.md)
Y
YixinKristy 已提交
316
- General Instance Segmentation
317
  - [SOLOv2](configs/solov2/README.md)
Y
YixinKristy 已提交
318
- Rotated Object Detection
qq_30618961's avatar
qq_30618961 已提交
319
  - [S2ANet](configs/dota/README_en.md)
Y
YixinKristy 已提交
320
- [Keypoint Detection](configs/keypoint)
W
wangguanzhong 已提交
321
  - [PP-TinyPose](configs/keypoint/tiny_pose)
G
Guanghua Yu 已提交
322
  - HigherHRNet
323
  - HRNet
324
  - LiteHRNet
G
Guanghua Yu 已提交
325
- [Multi-Object Tracking](configs/mot/README.md)
Y
YixinKristy 已提交
326
  - [PP-Tracking](deploy/pptracking/README_en.md)
G
Guanghua Yu 已提交
327 328 329
  - [DeepSORT](configs/mot/deepsort/README.md)
  - [JDE](configs/mot/jde/README.md)
  - [FairMOT](configs/mot/fairmot/README.md)
330
  - [ByteTrack](configs/mot/bytetrack/README.md)
Y
YixinKristy 已提交
331
- Practical Specific Models
qq_30618961's avatar
qq_30618961 已提交
332
  - [Face detection](configs/face_detection/README_en.md)
333 334
  - [Pedestrian detection](configs/pedestrian/README.md)
  - [Vehicle detection](configs/vehicle/README.md)
Y
YixinKristy 已提交
335
- Scienario Solution
336
  - [Real-Time Human Analysis Tool PP-Human](deploy/pphuman)
Y
YixinKristy 已提交
337
- Competition Solution
qq_30618961's avatar
qq_30618961 已提交
338 339
  - [Objects365 2019 Challenge champion model](static/docs/featured_model/champion_model/CACascadeRCNN_en.md)
  - [Best single model of Open Images 2019-Object Detection](static/docs/featured_model/champion_model/OIDV5_BASELINE_MODEL_en.md)
340

341
## <img title="" src="https://user-images.githubusercontent.com/48054808/157836473-1cf451fa-f01f-4148-ba68-b6d06d5da2f9.png" alt="" width="20"> Applications
342 343

- [Christmas portrait automatic generation tool](static/application/christmas)
W
wangguanzhong 已提交
344
- [Android Fitness Demo](https://github.com/zhiboniu/pose_demo_android)
345

346
## <img src="https://user-images.githubusercontent.com/48054808/157835981-ef6057b4-6347-4768-8fcc-cd07fcc3d8b0.png" width="20"/> Updates
347

348
For the details of version update, please refer to [Version Update Doc](docs/CHANGELOG.md).
349

350
## <img title="" src="https://user-images.githubusercontent.com/48054808/157835345-f5d24128-abaf-4813-b793-d2e5bdc70e5a.png" alt="" width="20"> License
351 352 353

PaddleDetection is released under the [Apache 2.0 license](LICENSE).

354
## <img src="https://user-images.githubusercontent.com/48054808/157835796-08d4ffbc-87d9-4622-89d8-cf11a44260fc.png" width="20"/> Contribution
355 356

Contributions are highly welcomed and we would really appreciate your feedback!!
357

358
- Thanks [Mandroide](https://github.com/Mandroide) for cleaning the code and unifying some function interface.
359
- Thanks [FL77N](https://github.com/FL77N/) for contributing the code of `Sparse-RCNN` model.
W
Wenyu 已提交
360
- Thanks [Chen-Song](https://github.com/Chen-Song) for contributing the code of `Swin Faster-RCNN` model.
W
wangguanzhong 已提交
361
- Thanks [yangyudong](https://github.com/yangyudong2020), [hchhtc123](https://github.com/hchhtc123) for contributing PP-Tracking GUI interface.
W
wangguanzhong 已提交
362
- Thanks [Shigure19](https://github.com/Shigure19) for contributing PP-TinyPose fitness APP.
363

364
## <img src="https://user-images.githubusercontent.com/48054808/157835276-9aab9d1c-1c46-446b-bdd4-5ab75c5cfa48.png" width="20"/> Citation
365 366 367 368 369 370 371 372 373

```
@misc{ppdet2019,
title={PaddleDetection, Object detection and instance segmentation toolkit based on PaddlePaddle.},
author={PaddlePaddle Authors},
howpublished = {\url{https://github.com/PaddlePaddle/PaddleDetection}},
year={2019}
}
```