object_detector.cc 8.8 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13
//   Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
J
Jack Zhou 已提交
14 15 16
#include <sstream>
// for setprecision
#include <iomanip>
Z
zlsh80826 已提交
17
#include <chrono>
J
Jack Zhou 已提交
18
#include "include/object_detector.h"
19 20 21 22

namespace PaddleDetection {

// Load Model and create model predictor
23
void ObjectDetector::LoadModel(const std::string& model_dir,
G
Guanghua Yu 已提交
24
                               const std::string& device,
25
                               const int min_subgraph_size,
26
                               const int batch_size,
C
channings 已提交
27
                               const std::string& run_mode,
28 29
                               const int gpu_id,
                               bool trt_calib_mode) {
30 31 32 33
  paddle::AnalysisConfig config;
  std::string prog_file = model_dir + OS_PATH_SEP + "__model__";
  std::string params_file = model_dir + OS_PATH_SEP + "__params__";
  config.SetModel(prog_file, params_file);
G
Guanghua Yu 已提交
34
  if (device == "GPU") {
C
channings 已提交
35
    config.EnableUseGpu(100, gpu_id);
36
    config.SwitchIrOptim(true);
37 38 39 40 41
    if (run_mode != "fluid") {
      auto precision = paddle::AnalysisConfig::Precision::kFloat32;
      if (run_mode == "trt_fp16") {
        precision = paddle::AnalysisConfig::Precision::kHalf;
      } else if (run_mode == "trt_int8") {
42
        precision = paddle::AnalysisConfig::Precision::kInt8;
43
      } else {
44
        printf("run_mode should be 'fluid', 'trt_fp32', 'trt_fp16' or 'trt_int8'");
45 46 47 48 49 50 51
      }
      config.EnableTensorRtEngine(
          1 << 10,
          batch_size,
          min_subgraph_size,
          precision,
          false,
52
          trt_calib_mode);
J
Jack Zhou 已提交
53
   }
G
Guanghua Yu 已提交
54 55
  } else if (device == "XPU"){
    config.EnableXpu(10*1024*1024);
56
  } else {
57
    config.DisableGpu();
58 59 60
  }
  config.SwitchUseFeedFetchOps(false);
  config.SwitchSpecifyInputNames(true);
61
  config.DisableGlogInfo();
62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78
  // Memory optimization
  config.EnableMemoryOptim();
  predictor_ = std::move(CreatePaddlePredictor(config));
}

// Visualiztion MaskDetector results
cv::Mat VisualizeResult(const cv::Mat& img,
                        const std::vector<ObjectResult>& results,
                        const std::vector<std::string>& lable_list,
                        const std::vector<int>& colormap) {
  cv::Mat vis_img = img.clone();
  for (int i = 0; i < results.size(); ++i) {
    int w = results[i].rect[1] - results[i].rect[0];
    int h = results[i].rect[3] - results[i].rect[2];
    cv::Rect roi = cv::Rect(results[i].rect[0], results[i].rect[2], w, h);

    // Configure color and text size
J
Jack Zhou 已提交
79 80 81 82 83
    std::ostringstream oss;
    oss << std::setiosflags(std::ios::fixed) << std::setprecision(4);
    oss << lable_list[results[i].class_id] << " ";
    oss << results[i].confidence;
    std::string text = oss.str();
84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112
    int c1 = colormap[3 * results[i].class_id + 0];
    int c2 = colormap[3 * results[i].class_id + 1];
    int c3 = colormap[3 * results[i].class_id + 2];
    cv::Scalar roi_color = cv::Scalar(c1, c2, c3);
    int font_face = cv::FONT_HERSHEY_COMPLEX_SMALL;
    double font_scale = 0.5f;
    float thickness = 0.5;
    cv::Size text_size = cv::getTextSize(text,
                                         font_face,
                                         font_scale,
                                         thickness,
                                         nullptr);
    cv::Point origin;
    origin.x = roi.x;
    origin.y = roi.y;

    // Configure text background
    cv::Rect text_back = cv::Rect(results[i].rect[0],
                                  results[i].rect[2] - text_size.height,
                                  text_size.width,
                                  text_size.height);

    // Draw roi object, text, and background
    cv::rectangle(vis_img, roi, roi_color, 2);
    cv::rectangle(vis_img, text_back, roi_color, -1);
    cv::putText(vis_img,
                text,
                origin,
                font_face,
113
                font_scale,
114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149
                cv::Scalar(255, 255, 255),
                thickness);
  }
  return vis_img;
}

void ObjectDetector::Preprocess(const cv::Mat& ori_im) {
  // Clone the image : keep the original mat for postprocess
  cv::Mat im = ori_im.clone();
  cv::cvtColor(im, im, cv::COLOR_BGR2RGB);
  preprocessor_.Run(&im, &inputs_);
}

void ObjectDetector::Postprocess(
    const cv::Mat& raw_mat,
    std::vector<ObjectResult>* result) {
  result->clear();
  int rh = 1;
  int rw = 1;
  if (config_.arch_ == "SSD" || config_.arch_ == "Face") {
    rh = raw_mat.rows;
    rw = raw_mat.cols;
  }

  int total_size = output_data_.size() / 6;
  for (int j = 0; j < total_size; ++j) {
    // Class id
    int class_id = static_cast<int>(round(output_data_[0 + j * 6]));
    // Confidence score
    float score = output_data_[1 + j * 6];
    int xmin = (output_data_[2 + j * 6] * rw);
    int ymin = (output_data_[3 + j * 6] * rh);
    int xmax = (output_data_[4 + j * 6] * rw);
    int ymax = (output_data_[5 + j * 6] * rh);
    int wd = xmax - xmin;
    int hd = ymax - ymin;
W
wangguanzhong 已提交
150
    if (score > threshold_ && class_id > -1) {
151 152 153 154 155 156 157 158 159 160
      ObjectResult result_item;
      result_item.rect = {xmin, xmax, ymin, ymax};
      result_item.class_id = class_id;
      result_item.confidence = score;
      result->push_back(result_item);
    }
  }
}

void ObjectDetector::Predict(const cv::Mat& im,
161 162 163 164 165
      const double threshold,
      const int warmup,
      const int repeats,
      const bool run_benchmark,
      std::vector<ObjectResult>* result) {
166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185
  // Preprocess image
  Preprocess(im);
  // Prepare input tensor
  auto input_names = predictor_->GetInputNames();
  for (const auto& tensor_name : input_names) {
    auto in_tensor = predictor_->GetInputTensor(tensor_name);
    if (tensor_name == "image") {
      int rh = inputs_.eval_im_size_f_[0];
      int rw = inputs_.eval_im_size_f_[1];
      in_tensor->Reshape({1, 3, rh, rw});
      in_tensor->copy_from_cpu(inputs_.im_data_.data());
    } else if (tensor_name == "im_size") {
      in_tensor->Reshape({1, 2});
      in_tensor->copy_from_cpu(inputs_.ori_im_size_.data());
    } else if (tensor_name == "im_info") {
      in_tensor->Reshape({1, 3});
      in_tensor->copy_from_cpu(inputs_.eval_im_size_f_.data());
    } else if (tensor_name == "im_shape") {
      in_tensor->Reshape({1, 3});
      in_tensor->copy_from_cpu(inputs_.ori_im_size_f_.data());
W
wangguanzhong 已提交
186 187 188
    } else if (tensor_name == "scale_factor") {
      in_tensor->Reshape({1, 4});
      in_tensor->copy_from_cpu(inputs_.scale_factor_f_.data());
189 190 191
    }
  }
  // Run predictor
192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209
  for (int i = 0; i < warmup; i++)
  {
    predictor_->ZeroCopyRun();
    // Get output tensor
    auto output_names = predictor_->GetOutputNames();
    auto out_tensor = predictor_->GetOutputTensor(output_names[0]);
    std::vector<int> output_shape = out_tensor->shape();
    // Calculate output length
    int output_size = 1;
    for (int j = 0; j < output_shape.size(); ++j) {
      output_size *= output_shape[j];
    }

    if (output_size < 6) {
      std::cerr << "[WARNING] No object detected." << std::endl;
    }
    output_data_.resize(output_size);
    out_tensor->copy_to_cpu(output_data_.data()); 
C
channings 已提交
210 211
  }

Z
zlsh80826 已提交
212
  auto start = std::chrono::steady_clock::now();
213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230
  for (int i = 0; i < repeats; i++)
  {
    predictor_->ZeroCopyRun();
    // Get output tensor
    auto output_names = predictor_->GetOutputNames();
    auto out_tensor = predictor_->GetOutputTensor(output_names[0]);
    std::vector<int> output_shape = out_tensor->shape();
    // Calculate output length
    int output_size = 1;
    for (int j = 0; j < output_shape.size(); ++j) {
      output_size *= output_shape[j];
    }

    if (output_size < 6) {
      std::cerr << "[WARNING] No object detected." << std::endl;
    }
    output_data_.resize(output_size);
    out_tensor->copy_to_cpu(output_data_.data()); 
231
  }
Z
zlsh80826 已提交
232 233 234
  auto end = std::chrono::steady_clock::now();
  std::chrono::duration<float> diff = end - start;
  float ms = diff.count() / repeats * 1000;
235
  printf("Inference: %f ms per batch image\n", ms);
236
  // Postprocessing result
237 238 239
  if(!run_benchmark) {
    Postprocess(im,  result);
  }
240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258
}

std::vector<int> GenerateColorMap(int num_class) {
  auto colormap = std::vector<int>(3 * num_class, 0);
  for (int i = 0; i < num_class; ++i) {
    int j = 0;
    int lab = i;
    while (lab) {
      colormap[i * 3] |= (((lab >> 0) & 1) << (7 - j));
      colormap[i * 3 + 1] |= (((lab >> 1) & 1) << (7 - j));
      colormap[i * 3 + 2] |= (((lab >> 2) & 1) << (7 - j));
      ++j;
      lab >>= 3;
    }
  }
  return colormap;
}

}  // namespace PaddleDetection