benchmark.cc 13.7 KB
Newer Older
T
tensor-tang 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
 *
 * Licensed under the Apache License, Version 2.0 (the "License");
 * you may not use this file except in compliance with the License.
 * You may obtain a copy of the License at
 *
 * http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License. */

#include <iostream>
T
tensor-tang 已提交
16
#include <random>
T
tensor-tang 已提交
17 18 19 20
#include <string>
#include <vector>
#include "gflags/gflags.h"
#include "glog/logging.h"
T
tensor-tang 已提交
21
#include "paddle/fluid/framework/tensor.h"
T
tensor-tang 已提交
22
#include "paddle/fluid/operators/jit/kernels.h"
23
#include "paddle/fluid/platform/device_tracer.h"
T
tensor-tang 已提交
24 25
#include "paddle/fluid/platform/place.h"
#include "paddle/fluid/platform/port.h"
T
tensor-tang 已提交
26
#include "paddle/fluid/platform/variant.h"  // for UNUSED
T
tensor-tang 已提交
27 28 29 30

DEFINE_int32(burning, 10, "Burning times.");
DEFINE_int32(repeat, 3000, "Repeat times.");
DEFINE_int32(max_size, 1000, "The Max size would be tested.");
31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57
DEFINE_string(filter, "", "The Benchmark name would be run.");

class BenchJITKernel {
 public:
  BenchJITKernel() = default;
  virtual ~BenchJITKernel() = default;
  virtual void Run() = 0;
  virtual const char* Name() = 0;
  virtual const char* Dtype() = 0;
  virtual const char* Place() = 0;
};

static std::vector<BenchJITKernel*> g_all_benchmarks;

BenchJITKernel* InsertBenchmark(BenchJITKernel* b) {
  g_all_benchmarks.push_back(b);
  return b;
}

#define BENCH_JITKERNEL(name, dtype, place)                                    \
  class BenchJITKernel_##name##_##dtype##_##place##_ : public BenchJITKernel { \
   public:                                                                     \
    const char* Name() override { return #name; }                              \
    const char* Dtype() override { return #dtype; }                            \
    const char* Place() override { return #place; }                            \
    void Run() override;                                                       \
  };                                                                           \
T
tensor-tang 已提交
58
  static auto inserted_##name##_##dtype##_##place##_ UNUSED =                  \
59 60 61 62 63 64 65 66 67 68 69 70 71 72 73
      InsertBenchmark(new BenchJITKernel_##name##_##dtype##_##place##_());     \
  void BenchJITKernel_##name##_##dtype##_##place##_::Run()

#define BENCH_FP32_CPU(name) BENCH_JITKERNEL(name, FP32, CPU)

void RUN_ALL_BENCHMARK() {
  for (auto p : g_all_benchmarks) {
    if (!FLAGS_filter.empty() && FLAGS_filter != p->Name()) {
      continue;
    }
    LOG(INFO) << "Benchmark " << p->Name() << "." << p->Dtype() << "."
              << p->Place();
    p->Run();
  }
}
T
tensor-tang 已提交
74 75 76

template <typename T>
void RandomVec(const int n, T* a, const T lower = static_cast<T>(-20.f),
77 78
               const T upper = static_cast<T>(20.f), unsigned int seed = 100) {
  std::mt19937 rng(seed);
T
tensor-tang 已提交
79 80 81 82 83 84 85 86 87 88 89 90 91 92
  std::uniform_real_distribution<double> uniform_dist(0, 1);
  for (int i = 0; i < n; ++i) {
    a[i] = static_cast<T>(uniform_dist(rng) * (upper - lower) + lower);
  }
}

std::vector<int> TestSizes() {
  std::vector<int> s;
  for (int i = 1; i <= FLAGS_max_size; ++i) {
    s.push_back(i);
  }
  return s;
}

T
tensor-tang 已提交
93 94 95 96 97 98 99
template <typename KernelTuples, typename... Args>
struct BenchFunc {
  // return this function avg time
  double operator()(const typename KernelTuples::func_type tgt, Args... args) {
    for (int i = 0; i < FLAGS_burning; ++i) {
      tgt(args...);
    }
T
tensor-tang 已提交
100
    auto start = paddle::platform::PosixInNsec() * 1e-3;
T
tensor-tang 已提交
101 102 103
    for (int i = 0; i < FLAGS_repeat; ++i) {
      tgt(args...);
    }
T
tensor-tang 已提交
104
    auto end = paddle::platform::PosixInNsec() * 1e-3;
105
    return static_cast<double>(end - start) / FLAGS_repeat;
T
tensor-tang 已提交
106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134
  }
};

namespace jit = paddle::operators::jit;

template <jit::KernelType KT, typename KernelTuples, typename PlaceType,
          typename... Args>
void BenchAllImpls(const typename KernelTuples::attr_type& attr, Args... args) {
  BenchFunc<KernelTuples, Args...> benchmark;
  std::vector<std::pair<std::string, double>> infos;
  // test refer
  auto refer = jit::GetRefer<KT, KernelTuples>();
  if (!refer) {
    LOG(FATAL) << "Refer can not be empty!";
  }
  infos.push_back(std::make_pair("Refer", benchmark(refer, args...)));

  // test jitcode
  auto jitcode = jit::GetJitCode<KT, KernelTuples, PlaceType>(attr);
  if (jitcode) {
    infos.push_back(std::make_pair("JitCode", benchmark(jitcode, args...)));
  }
  // test all impls in more
  jit::KernelKey kkey(KT, PlaceType());
  auto& pool = jit::KernelPool().Instance().AllKernels();
  auto iter = pool.find(kkey);
  if (iter != pool.end()) {
    auto& impls = iter->second;
    for (auto& impl : impls) {
T
tensor-tang 已提交
135
      auto i = dynamic_cast<const jit::KernelMore<KernelTuples>*>(impl.get());
T
tensor-tang 已提交
136 137
      if (i && i->UseMe(attr)) {
        auto more = i->GetFunc();
T
tensor-tang 已提交
138 139
        infos.push_back(
            std::make_pair(i->ImplType(), benchmark(more, args...)));
T
tensor-tang 已提交
140 141
      }
    }
T
tensor-tang 已提交
142
  }
T
tensor-tang 已提交
143 144 145 146
  // Test result from Get function
  auto tgt = jit::Get<KT, KernelTuples, PlaceType>(attr);
  if (!tgt) {
    LOG(FATAL) << "Target can not be empty!";
T
tensor-tang 已提交
147
  }
T
tensor-tang 已提交
148 149 150 151 152 153 154 155 156
  infos.push_back(std::make_pair("Target", benchmark(tgt, args...)));

  // print
  std::ostringstream loginfos;
  loginfos << "Kernel Type " << jit::to_string(KT) << ": " << attr << ": ";
  for (auto pair : infos) {
    loginfos << pair.first << " takes " << pair.second << " us; ";
  }
  LOG(INFO) << loginfos.str();
T
tensor-tang 已提交
157 158
}

T
tensor-tang 已提交
159 160
using Tensor = paddle::framework::Tensor;

161
template <jit::KernelType KT, typename T, typename PlaceType>
162
void BenchXYZNKernel() {
T
tensor-tang 已提交
163
  for (int d : TestSizes()) {
T
tensor-tang 已提交
164 165 166 167 168 169 170 171 172 173 174
    Tensor x, y, z;
    x.Resize({d});
    y.Resize({d});
    z.Resize({d});
    T* x_data = x.mutable_data<T>(PlaceType());
    T* y_data = y.mutable_data<T>(PlaceType());
    T* z_data = z.mutable_data<T>(PlaceType());
    RandomVec<T>(d, x_data);
    RandomVec<T>(d, y_data);
    BenchAllImpls<KT, jit::XYZNTuples<T>, PlaceType>(d, x.data<T>(),
                                                     y.data<T>(), z_data, d);
T
tensor-tang 已提交
175 176
  }
}
177

178
template <jit::KernelType KT, typename T, typename PlaceType>
179 180 181
void BenchAXYNKernel() {
  for (int d : TestSizes()) {
    const T a = static_cast<T>(3);
T
tensor-tang 已提交
182 183 184 185 186 187 188
    Tensor x, y;
    x.Resize({d});
    y.Resize({d});
    T* x_data = x.mutable_data<T>(PlaceType());
    T* y_data = y.mutable_data<T>(PlaceType());
    RandomVec<T>(d, x_data);
    BenchAllImpls<KT, jit::AXYNTuples<T>, PlaceType>(d, &a, x.data<T>(), y_data,
T
tensor-tang 已提交
189
                                                     d);
T
tensor-tang 已提交
190 191 192
    // test inplace
    BenchAllImpls<KT, jit::AXYNTuples<T>, PlaceType>(d, &a, x.data<T>(), x_data,
                                                     d);
193 194 195
  }
}

196 197 198 199 200 201 202 203 204 205 206
template <jit::KernelType KT, typename T, typename PlaceType>
void BenchXRNKernel() {
  for (int d : TestSizes()) {
    Tensor x;
    RandomVec<T>(d, x.mutable_data<T>({d}, PlaceType()));
    T res;
    BenchAllImpls<KT, jit::XRNTuples<T>, PlaceType>(d, x.data<T>(), &res, d);
  }
}

template <jit::KernelType KT, typename T, typename PlaceType>
207 208
void BenchXYNKernel() {
  for (int d : TestSizes()) {
T
tensor-tang 已提交
209 210 211 212 213 214 215
    Tensor x, y;
    x.Resize({d});
    y.Resize({d});
    T* x_data = x.mutable_data<T>(PlaceType());
    T* y_data = y.mutable_data<T>(PlaceType());
    RandomVec<T>(d, x_data);
    BenchAllImpls<KT, jit::XYNTuples<T>, PlaceType>(d, x.data<T>(), y_data, d);
216 217 218
  }
}

219
template <jit::KernelType KT, typename T, typename PlaceType>
T
tensor-tang 已提交
220 221 222
void BenchLSTMKernel() {
  for (bool use_peephole : {true, false}) {
    for (int d : TestSizes()) {
T
tensor-tang 已提交
223
      const jit::lstm_attr_t attr(d, jit::kVSigmoid, jit::kVTanh, jit::kVTanh,
T
tensor-tang 已提交
224
                                  use_peephole);
T
tensor-tang 已提交
225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241
      Tensor x, ct_1, ct, ht, wp, checked;
      x.Resize({4 * d});
      ct_1.Resize({d});
      ct.Resize({d});
      ht.Resize({d});
      wp.Resize({3 * d});
      checked.Resize({2 * d});
      auto place = PlaceType();
      RandomVec<T>(x.numel(), x.mutable_data<T>(place), -2.f, 2.f);
      RandomVec<T>(wp.numel(), wp.mutable_data<T>(place), -2.f, 2.f);
      RandomVec<T>(ct_1.numel(), ct_1.mutable_data<T>(place), -2.f, 2.f);
      const T* ct_1_data = ct_1.data<T>();
      const T* wp_data = wp.data<T>();
      T* x_data = x.mutable_data<T>(place);
      T* checked_data = checked.mutable_data<T>(place);
      T* ct_data = ct.mutable_data<T>(place);
      T* ht_data = ht.mutable_data<T>(place);
T
tensor-tang 已提交
242 243 244 245 246 247 248 249 250
      jit::lstm_t step;
      step.gates = x_data;
      step.ct_1 = ct_1_data;
      step.ct = ct_data;
      step.ht = ht_data;
      if (use_peephole) {
        step.wp = wp_data;
        step.checked = checked_data;
      }
T
tensor-tang 已提交
251
      BenchAllImpls<KT, jit::LSTMTuples<T>, PlaceType>(attr, &step, &attr);
T
tensor-tang 已提交
252 253 254 255
    }
  }
}

256
template <jit::KernelType KT, typename T, typename PlaceType>
257 258
void BenchGRUKernel() {
  for (int d : TestSizes()) {
T
tensor-tang 已提交
259
    const jit::gru_attr_t attr(d, jit::kVSigmoid, jit::kVTanh);
T
tensor-tang 已提交
260 261 262 263 264 265 266 267 268 269
    auto place = PlaceType();
    Tensor x, ht_1, ht;
    x.Resize({3 * d});
    ht_1.Resize({d});
    ht.Resize({d});
    RandomVec<T>(3 * d, x.mutable_data<T>(place), -2.f, 2.f);
    RandomVec<T>(d, ht_1.mutable_data<T>(place), -2.f, 2.f);
    const T* ht_1_data = ht_1.data<T>();
    T* x_data = x.mutable_data<T>(place);
    T* ht_data = ht.mutable_data<T>(place);
270 271 272 273
    jit::gru_t step;
    step.gates = x_data;
    step.ht_1 = ht_1_data;
    step.ht = ht_data;
T
tensor-tang 已提交
274
    BenchAllImpls<KT, jit::GRUTuples<T>, PlaceType>(attr, &step, &attr);
275 276 277
  }
}

278
template <jit::KernelType KT, typename T, typename PlaceType>
279
void BenchSeqPoolKernel() {
280 281
  std::vector<jit::SeqPoolType> pool_types = {
      jit::SeqPoolType::kSum, jit::SeqPoolType::kAvg, jit::SeqPoolType::kSqrt};
282
  for (auto type : pool_types) {
T
tensor-tang 已提交
283
    for (int w : TestSizes()) {
T
tensor-tang 已提交
284
      jit::seq_pool_attr_t attr(w, type);
T
tensor-tang 已提交
285
      for (int h : TestSizes()) {
T
tensor-tang 已提交
286
        attr.h = h;
T
tensor-tang 已提交
287 288 289 290 291 292
        Tensor x, y;
        x.Resize({h * w});
        y.Resize({w});
        RandomVec<T>(h * w, x.mutable_data<T>(PlaceType()), -2.f, 2.f);
        const T* x_data = x.data<T>();
        T* y_data = y.mutable_data<T>(PlaceType());
293 294 295 296 297 298 299
        BenchAllImpls<KT, jit::SeqPoolTuples<T>, PlaceType>(attr, x_data,
                                                            y_data, &attr);
      }
    }
  }
}

300
template <jit::KernelType KT, typename T, typename PlaceType>
T
tensor-tang 已提交
301 302
void BenchMatMulKernel() {
  for (int m : {1, 2, 3, 4}) {
303
    for (int n : TestSizes()) {
T
tensor-tang 已提交
304
      for (int k : TestSizes()) {
T
tensor-tang 已提交
305 306 307 308 309 310 311 312 313
        Tensor a, b, c;
        a.Resize({m * k});
        b.Resize({k * n});
        c.Resize({m * n});
        RandomVec<T>(m * k, a.mutable_data<T>(PlaceType()), -2.f, 2.f);
        RandomVec<T>(k * n, b.mutable_data<T>(PlaceType()), -2.f, 2.f);
        const T* a_data = a.data<T>();
        const T* b_data = b.data<T>();
        T* c_data = c.mutable_data<T>(PlaceType());
314 315 316
        const jit::matmul_attr_t attr{m, n, k};
        BenchAllImpls<KT, jit::MatMulTuples<T>, PlaceType>(attr, a_data, b_data,
                                                           c_data, &attr);
T
tensor-tang 已提交
317 318 319 320 321
      }
    }
  }
}

322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337
template <jit::KernelType KT, typename T, typename PlaceType>
void BenchSoftmaxKernel() {
  for (int bs : {1, 2, 10}) {
    for (int n : TestSizes()) {
      Tensor x, y;
      x.Resize({bs, n});
      y.Resize({bs, n});
      RandomVec<T>(bs * n, x.mutable_data<T>(PlaceType()), -2.f, 2.f);
      const T* x_data = x.data<T>();
      T* y_data = y.mutable_data<T>(PlaceType());
      BenchAllImpls<KT, jit::SoftmaxTuples<T>, PlaceType>(n, x_data, y_data, n,
                                                          bs);
    }
  }
}

338
using T = float;
339
using CPUPlace = paddle::platform::CPUPlace;
340 341

// xyzn
342 343 344 345
BENCH_FP32_CPU(kVMul) { BenchXYZNKernel<jit::kVMul, T, CPUPlace>(); }
BENCH_FP32_CPU(kVAdd) { BenchXYZNKernel<jit::kVAdd, T, CPUPlace>(); }
BENCH_FP32_CPU(kVAddRelu) { BenchXYZNKernel<jit::kVAddRelu, T, CPUPlace>(); }
BENCH_FP32_CPU(kVSub) { BenchXYZNKernel<jit::kVSub, T, CPUPlace>(); }
346 347

// axyn
348 349
BENCH_FP32_CPU(kVScal) { BenchAXYNKernel<jit::kVScal, T, CPUPlace>(); }
BENCH_FP32_CPU(kVAddBias) { BenchAXYNKernel<jit::kVAddBias, T, CPUPlace>(); }
350

351 352 353
// xrn
BENCH_FP32_CPU(kHSum) { BenchXRNKernel<jit::kHSum, T, CPUPlace>(); }
BENCH_FP32_CPU(kHMax) { BenchXRNKernel<jit::kHMax, T, CPUPlace>(); }
354 355

// xyn
356 357 358 359 360 361
BENCH_FP32_CPU(kVRelu) { BenchXYNKernel<jit::kVRelu, T, CPUPlace>(); }
BENCH_FP32_CPU(kVIdentity) { BenchXYNKernel<jit::kVIdentity, T, CPUPlace>(); }
BENCH_FP32_CPU(kVSquare) { BenchXYNKernel<jit::kVSquare, T, CPUPlace>(); }
BENCH_FP32_CPU(kVExp) { BenchXYNKernel<jit::kVExp, T, CPUPlace>(); }
BENCH_FP32_CPU(kVSigmoid) { BenchXYNKernel<jit::kVSigmoid, T, CPUPlace>(); }
BENCH_FP32_CPU(kVTanh) { BenchXYNKernel<jit::kVTanh, T, CPUPlace>(); }
362 363

// lstm and peephole
364 365
BENCH_FP32_CPU(kLSTMCtHt) { BenchLSTMKernel<jit::kLSTMCtHt, T, CPUPlace>(); }
BENCH_FP32_CPU(kLSTMC1H1) { BenchLSTMKernel<jit::kLSTMC1H1, T, CPUPlace>(); }
366 367

// gru functions
368 369 370
BENCH_FP32_CPU(kGRUH1) { BenchGRUKernel<jit::kGRUH1, T, CPUPlace>(); }
BENCH_FP32_CPU(kGRUHtPart1) { BenchGRUKernel<jit::kGRUHtPart1, T, CPUPlace>(); }
BENCH_FP32_CPU(kGRUHtPart2) { BenchGRUKernel<jit::kGRUHtPart2, T, CPUPlace>(); }
371 372

// seq pool function
373
BENCH_FP32_CPU(kSeqPool) { BenchSeqPoolKernel<jit::kSeqPool, T, CPUPlace>(); }
374 375

// matmul
376 377 378 379
BENCH_FP32_CPU(kMatMul) { BenchMatMulKernel<jit::kMatMul, T, CPUPlace>(); }

// softmax
BENCH_FP32_CPU(kSoftmax) { BenchSoftmaxKernel<jit::kSoftmax, T, CPUPlace>(); }
380

381 382 383 384 385 386
// Benchmark all jit kernels including jitcode, mkl and refer.
// To use this tool, run command: ./benchmark [options...]
// Options:
//     --burning: the burning time before count
//     --repeat: the repeat times
//     --max_size: the max size would be tested
387
//     --filter: the bench name would be run
388 389 390 391 392
int main(int argc, char* argv[]) {
  gflags::ParseCommandLineFlags(&argc, &argv, true);
  google::InitGoogleLogging(argv[0]);
  LOG(INFO) << "Burning " << FLAGS_burning << " times, Repeat " << FLAGS_repeat
            << " times.";
T
tensor-tang 已提交
393

394
  RUN_ALL_BENCHMARK();
395
}