nccl_test.cu 3.9 KB
Newer Older
Y
Yu Yang 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.

   Licensed under the Apache License, Version 2.0 (the "License");
   you may not use this file except in compliance with the License.
   You may obtain a copy of the License at

   http://www.apache.org/licenses/LICENSE-2.0

   Unless required by applicable law or agreed to in writing, software
   distributed under the License is distributed on an "AS IS" BASIS,
   WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
   See the License for the specific language governing permissions and
   limitations under the License. */

#include "glog/logging.h"
#include "gtest/gtest.h"
#include "paddle/platform/device_context.h"
#include "paddle/platform/dynload/nccl.h"
#include "paddle/platform/enforce.h"
#include "paddle/platform/gpu_info.h"

#include <thrust/device_vector.h>
#include <memory>
#include <vector>

static int dev_count = 0;

namespace paddle {
namespace platform {

TEST(NCCL, init) {
  std::vector<ncclComm_t> comms;
  comms.resize(dev_count);
Y
Yu Yang 已提交
34
  dynload::ncclCommInitAll(comms.data(), dev_count, nullptr);
Y
Yu Yang 已提交
35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64
  for (int i = 0; i < dev_count; ++i) {
    dynload::ncclCommDestroy(comms[i]);
  }
}

template <typename T>
struct PerThreadData {
  thrust::device_vector<T> send_buff;
  thrust::device_vector<T> recv_buff;
  CUDADeviceContext dev_ctx;

  T* SendBuff() { return thrust::raw_pointer_cast(send_buff.data()); }

  T* RecvBuff() { return thrust::raw_pointer_cast(recv_buff.data()); }

  PerThreadData(int gpu_id, size_t size) : dev_ctx(GPUPlace(gpu_id)) {
    send_buff.resize(size);
    for (size_t i = 0; i < size; ++i) {
      send_buff[i] = static_cast<T>(i);
    }
    recv_buff.resize(size);
  }
};

static constexpr int ELEM_COUNT = 10000;

TEST(NCCL, all_reduce) {
  std::vector<ncclComm_t> comms;
  comms.resize(dev_count);
  VLOG(1) << "Initializing ncclComm";
Y
Yu Yang 已提交
65
  dynload::ncclCommInitAll(comms.data(), dev_count, nullptr);
Y
Yu Yang 已提交
66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136
  VLOG(1) << "ncclComm initialized";
  VLOG(1) << "Creating thread data";
  std::vector<std::unique_ptr<PerThreadData<double>>> data;
  data.reserve(dev_count);
  for (int i = 0; i < dev_count; ++i) {
    VLOG(1) << "Creating thread data for device " << i;
    SetDeviceId(i);
    data.emplace_back(new PerThreadData<double>(i, ELEM_COUNT));
  }
  VLOG(1) << "Thread data created";

  VLOG(1) << "Check send_buf data";
  for (int i = 0; i < dev_count; ++i) {
    VLOG(1) << "Check on device " << i;
    SetDeviceId(i);
    thrust::host_vector<double> tmp = data[i]->send_buff;
    for (size_t j = 0; j < tmp.size(); ++j) {
      ASSERT_NEAR(static_cast<double>(j), tmp[j], 1e-5);
    }
  }

  VLOG(1) << "Invoking ncclAllReduce";

  for (int i = 0; i < dev_count; ++i) {
    VLOG(1) << "Invoking ncclAllReduce with device " << i;
    SetDeviceId(i);
    PADDLE_ENFORCE(dynload::ncclAllReduce(
        data[i]->SendBuff(), data[i]->RecvBuff(), ELEM_COUNT, ncclDouble,
        ncclSum, comms[i], data[i]->dev_ctx.stream()));
    VLOG(1) << "Invoked ncclAllReduce for device " << i;
  }

  VLOG(1) << "Invoked ncclAllReduce";

  VLOG(1) << "Sync devices";
  for (int i = 0; i < dev_count; ++i) {
    VLOG(1) << "Sync device " << i;
    SetDeviceId(i);
    data[i]->dev_ctx.Wait();
  }
  VLOG(1) << "device synced";

  for (int i = 0; i < dev_count; ++i) {
    SetDeviceId(i);
    VLOG(1) << "Checking vector on device " << i;
    thrust::host_vector<double> tmp = data[i]->recv_buff;
    for (size_t j = 0; j < tmp.size(); ++j) {
      auto elem = static_cast<double>(j);
      elem *= dev_count;
      ASSERT_NEAR(tmp[j], elem, 1e-4);
    }
  }

  for (int i = 0; i < dev_count; ++i) {
    dynload::ncclCommDestroy(comms[i]);
  }
}
}  // namespace platform
}  // namespace paddle

int main(int argc, char** argv) {
  dev_count = paddle::platform::GetCUDADeviceCount();
  if (dev_count <= 1) {
    LOG(WARNING)
        << "Cannot test multi-gpu nccl, because the CUDA device count is "
        << dev_count;
    return 0;
  }
  testing::InitGoogleTest(&argc, argv);
  return RUN_ALL_TESTS();
}