prior_box_op.h 6.6 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
W
wanghaox 已提交
2 3 4 5 6 7 8 9 10 11 12 13 14 15

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#pragma once
Y
Yi Wang 已提交
16 17 18
#include "paddle/fluid/framework/op_registry.h"
#include "paddle/fluid/operators/math/math_function.h"
#include "paddle/fluid/platform/transform.h"
W
wanghaox 已提交
19 20 21 22

namespace paddle {
namespace operators {

W
wanghaox 已提交
23 24 25
inline void ExpandAspectRatios(const std::vector<float>& input_aspect_ratior,
                               bool flip,
                               std::vector<float>& output_aspect_ratior) {
26
  constexpr float epsilon = 1e-6;
W
wanghaox 已提交
27
  output_aspect_ratior.clear();
C
chengduoZH 已提交
28
  output_aspect_ratior.push_back(1.0f);
W
wanghaox 已提交
29 30 31 32
  for (size_t i = 0; i < input_aspect_ratior.size(); ++i) {
    float ar = input_aspect_ratior[i];
    bool already_exist = false;
    for (size_t j = 0; j < output_aspect_ratior.size(); ++j) {
33
      if (fabs(ar - output_aspect_ratior[j]) < epsilon) {
W
wanghaox 已提交
34 35 36 37 38 39 40
        already_exist = true;
        break;
      }
    }
    if (!already_exist) {
      output_aspect_ratior.push_back(ar);
      if (flip) {
C
chengduoZH 已提交
41
        output_aspect_ratior.push_back(1.0f / ar);
W
wanghaox 已提交
42 43 44 45 46
      }
    }
  }
}

W
wanghaox 已提交
47 48
template <typename T>
struct ClipFunctor {
49
  HOSTDEVICE inline T operator()(T in) const {
W
wanghaox 已提交
50 51 52 53
    return std::min<T>(std::max<T>(in, 0.), 1.);
  }
};

W
wanghaox 已提交
54 55 56 57 58 59
template <typename Place, typename T>
class PriorBoxOpKernel : public framework::OpKernel<T> {
 public:
  void Compute(const framework::ExecutionContext& ctx) const override {
    auto* input = ctx.Input<paddle::framework::Tensor>("Input");
    auto* image = ctx.Input<paddle::framework::Tensor>("Image");
W
wanghaox 已提交
60 61
    auto* boxes = ctx.Output<paddle::framework::Tensor>("Boxes");
    auto* vars = ctx.Output<paddle::framework::Tensor>("Variances");
W
wanghaox 已提交
62

C
chengduoZH 已提交
63 64
    auto min_sizes = ctx.Attr<std::vector<float>>("min_sizes");
    auto max_sizes = ctx.Attr<std::vector<float>>("max_sizes");
W
wanghaox 已提交
65 66 67 68 69 70
    auto input_aspect_ratio = ctx.Attr<std::vector<float>>("aspect_ratios");
    auto variances = ctx.Attr<std::vector<float>>("variances");
    auto flip = ctx.Attr<bool>("flip");
    auto clip = ctx.Attr<bool>("clip");

    std::vector<float> aspect_ratios;
W
wanghaox 已提交
71
    ExpandAspectRatios(input_aspect_ratio, flip, aspect_ratios);
W
wanghaox 已提交
72

W
wanghaox 已提交
73 74 75
    T step_w = static_cast<T>(ctx.Attr<float>("step_w"));
    T step_h = static_cast<T>(ctx.Attr<float>("step_h"));
    T offset = static_cast<T>(ctx.Attr<float>("offset"));
W
wanghaox 已提交
76

W
wanghaox 已提交
77 78
    auto img_width = image->dims()[3];
    auto img_height = image->dims()[2];
W
wanghaox 已提交
79

W
wanghaox 已提交
80 81
    auto feature_width = input->dims()[3];
    auto feature_height = input->dims()[2];
W
wanghaox 已提交
82

W
wanghaox 已提交
83
    T step_width, step_height;
W
wanghaox 已提交
84
    if (step_w == 0 || step_h == 0) {
W
wanghaox 已提交
85 86
      step_width = static_cast<T>(img_width) / feature_width;
      step_height = static_cast<T>(img_height) / feature_height;
W
wanghaox 已提交
87 88 89 90 91 92 93 94 95 96
    } else {
      step_width = step_w;
      step_height = step_h;
    }

    int num_priors = aspect_ratios.size() * min_sizes.size();
    if (max_sizes.size() > 0) {
      num_priors += max_sizes.size();
    }

W
wanghaox 已提交
97 98
    boxes->mutable_data<T>(ctx.GetPlace());
    vars->mutable_data<T>(ctx.GetPlace());
W
wanghaox 已提交
99

W
wanghaox 已提交
100
    auto e_boxes = framework::EigenTensor<T, 4>::From(*boxes);
W
wanghaox 已提交
101 102
    for (int h = 0; h < feature_height; ++h) {
      for (int w = 0; w < feature_width; ++w) {
W
wanghaox 已提交
103 104 105
        T center_x = (w + offset) * step_width;
        T center_y = (h + offset) * step_height;
        T box_width, box_height;
106
        int idx = 0;
W
wanghaox 已提交
107
        for (size_t s = 0; s < min_sizes.size(); ++s) {
C
chengduoZH 已提交
108
          auto min_size = min_sizes[s];
W
wanghaox 已提交
109
          // first prior: aspect_ratio = 1, size = min_size
110
          box_width = box_height = min_size / 2.;
W
wanghaox 已提交
111
          // xmin
112
          e_boxes(h, w, idx, 0) = (center_x - box_width) / img_width;
W
wanghaox 已提交
113
          // ymin
114
          e_boxes(h, w, idx, 1) = (center_y - box_height) / img_height;
W
wanghaox 已提交
115
          // xmax
116
          e_boxes(h, w, idx, 2) = (center_x + box_width) / img_width;
W
wanghaox 已提交
117
          // ymax
118
          e_boxes(h, w, idx, 3) = (center_y + box_height) / img_height;
W
wanghaox 已提交
119

120
          idx++;
W
wanghaox 已提交
121
          if (max_sizes.size() > 0) {
C
chengduoZH 已提交
122
            auto max_size = max_sizes[s];
W
wanghaox 已提交
123 124
            // second prior: aspect_ratio = 1,
            // size = sqrt(min_size * max_size)
125
            box_width = box_height = sqrt(min_size * max_size) / 2.;
W
wanghaox 已提交
126
            // xmin
127
            e_boxes(h, w, idx, 0) = (center_x - box_width) / img_width;
W
wanghaox 已提交
128
            // ymin
129
            e_boxes(h, w, idx, 1) = (center_y - box_height) / img_height;
W
wanghaox 已提交
130
            // xmax
131
            e_boxes(h, w, idx, 2) = (center_x + box_width) / img_width;
W
wanghaox 已提交
132
            // ymax
133
            e_boxes(h, w, idx, 3) = (center_y + box_height) / img_height;
134
            idx++;
W
wanghaox 已提交
135 136 137 138 139 140 141 142
          }

          // rest of priors
          for (size_t r = 0; r < aspect_ratios.size(); ++r) {
            float ar = aspect_ratios[r];
            if (fabs(ar - 1.) < 1e-6) {
              continue;
            }
143 144
            box_width = min_size * sqrt(ar) / 2.;
            box_height = min_size / sqrt(ar) / 2.;
W
wanghaox 已提交
145
            // xmin
146
            e_boxes(h, w, idx, 0) = (center_x - box_width) / img_width;
W
wanghaox 已提交
147
            // ymin
148
            e_boxes(h, w, idx, 1) = (center_y - box_height) / img_height;
W
wanghaox 已提交
149
            // xmax
150
            e_boxes(h, w, idx, 2) = (center_x + box_width) / img_width;
W
wanghaox 已提交
151
            // ymax
152
            e_boxes(h, w, idx, 3) = (center_y + box_height) / img_height;
153
            idx++;
W
wanghaox 已提交
154 155 156 157 158 159
          }
        }
      }
    }

    if (clip) {
W
wanghaox 已提交
160 161 162 163 164
      platform::Transform<platform::CPUDeviceContext> trans;
      ClipFunctor<T> clip_func;
      trans(ctx.template device_context<platform::CPUDeviceContext>(),
            boxes->data<T>(), boxes->data<T>() + boxes->numel(),
            boxes->data<T>(), clip_func);
W
wanghaox 已提交
165
    }
W
wanghaox 已提交
166

W
wanghaox 已提交
167 168 169 170 171
    framework::Tensor var_t;
    var_t.mutable_data<T>(
        framework::make_ddim({1, static_cast<int>(variances.size())}),
        ctx.GetPlace());
    auto var_et = framework::EigenTensor<T, 2>::From(var_t);
W
wanghaox 已提交
172
    for (size_t i = 0; i < variances.size(); ++i) {
W
wanghaox 已提交
173
      var_et(0, i) = variances[i];
W
wanghaox 已提交
174
    }
W
wanghaox 已提交
175

W
wanghaox 已提交
176
    int box_num = feature_height * feature_width * num_priors;
W
wanghaox 已提交
177 178 179 180 181 182 183
    auto var_dim = vars->dims();
    vars->Resize({box_num, static_cast<int>(variances.size())});

    auto e_vars = framework::EigenMatrix<T, Eigen::RowMajor>::From(*vars);
    e_vars = var_et.broadcast(Eigen::DSizes<int, 2>(box_num, 1));

    vars->Resize(var_dim);
W
wanghaox 已提交
184
  }
W
wanghaox 已提交
185
};  // namespace operators
W
wanghaox 已提交
186 187 188

}  // namespace operators
}  // namespace paddle